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Abstract: Contrast enhancement within the domain of digital image processing is inherently application-specific, and 
the assessment of image quality is fundamentally subjective. Consequently, the interpretation of an image 
characterized by superior contrast varies among individuals. A multitude of contrast enhancement methodologies has 
been conceived, including but not limited to contrast stretching, histogram equalization, and homomorphic filtering. 
This study delineates the implementation of an adaptive contrast enhancement technique predicated on fuzzy logic 
principles. Fuzzy logic has been empirically demonstrated to be exceptionally proficient in handling data that embodies 
ambiguity and vagueness. We have implemented and compare the performance of adaptive fuzzy inference system 
that ascertains the pixel values of the output based on the contrast metrics derived from the input image. The contrast 
metric employed in this study is the standard deviation of the image. The empirical results have been compared with 
pre-existing methodologies for contrast enhancement and evaluated through both visual and quantitative metrics. 
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INTRODUCTION 
Retinal image enhancement plays a important role in ophthalmology for diagnosing diseases such as 
diabetic retinopathy, glaucoma, and hypertension. The quality of retinal images is often compromised by 
noise and low contrast, which can hinder accurate diagnosis. The constituent of retinal fundus imaging 
is a non-invasive method which was employed extensively in the domain of ophthalmology as it has 
prompt identification and assessment of an array of retinal disorders, notably diabetic retinopathy (DR), 
glaucoma, age-related macular degeneration (AMD), and hypertensive retinopathy [1]. In the inaccurate 
diagnosis, this affliction method has the potential to culminate in irreversible visual impairment. The 
new era innovation leads to automated mechanism that can be used for scrutinizing retinal imagery with 
the domain of artificial intelligence. It has show promising effective method in the detection of various 
departments like pathology, etc. Nevertheless, the accuracy and dependability of these systems are heavily 
reliant on the quality of the foundational fundus images [2].To address these challenges, image quality 
enhancement has become an essential preprocessing step in retinal image analysis pipelines. The key goals 
are to enhance contrast, reduce noise, and restore color fidelity while preserving fine anatomical details 
such as blood vessels, the optic disc, and macular region, which are crucial for accurate diagnosis [3]. 
Traditional enhancement techniques like histogram equalization, median filtering, Gaussian smoothing, 
and Retinex-based illumination correction offer limited performance due to their heuristic nature and 
lack of adaptability [4]. 
Related Work 
Image enhancement represents an crucial preprocessing procedure in instances where the initial retinal 
image does not qualify as an appropriate candidate for ensuing segmentation and feature extraction.  
The predominant technique, which is generally used is histogram equalization for image enhancement, 
as it assesses the likelihood of occurrence for each intensity level and subsequently reassigns a new level 
in accordance with this assessed probability. In certain applications, histogram equalization can lead to 
excessive enhancement of the image [5]. Transform-based gamma correction, along with histogram 
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equalization, is employed in [6], which incorporates a weighting distribution function. When histogram 
equalization is conducted on segments of a specified size within the images, it is referred to as adaptive 
histogram equalization [7]. Contrast limited adaptive histogram equalization (CLAHE), as the 
nomenclature implies, truncates the histogram at a predetermined threshold. The portion of the 
histogram that exceeds this clipping threshold is redistributed uniformly across all histogram bins. The 
phase of contrast enhancement simultaneously elevates the noise levels present in the image. 
Consequently, edge-preserving filters, which mitigate the noise inherent in the image while maintaining 
the details, must be employed for effective noise reduction. The smoothing methodologies can be 
categorized broadly into linear technique and non-linear techniques. Linear filtering encompasses 
operations utilizing various kernels, such as averaging or Gaussian filters. In this process, the pixel values 
are substituted with the average or weighted average of their surrounding neighborhood. Adaptive mean 
filters [8][9] modify their behavior in accordance with the local characteristics of the image and utilize 
statistical measures such as mean and variance. Therefore, significant image features, such as edges, are 
compromised by these linear filters. In contrast, non-linear filters excel in preserving features by executing 
adaptive smoothing contingent upon the local structures within the image [10]. The median filter is a 
prominent non-linear filter, which yields less blurring in comparison to mean filters. Adaptive median 
filters maintain edges and features while concurrently facilitating noise reduction [11]. Consequently, 
non-linear filtering is increasingly employed in various denoising applications [12]. 
Image enhancement additionally entails the rectification of non-uniform illumination in retinal images. 
The non-uniform illumination observed in retinal fundus images primarily arises from an optical 
aberration known as vignetting, which is a result of inadequate light focusing through an optical system. 
To rectify the vignetting effect, illumination equalization must be implemented on the image. Traditional 
methodologies endeavor to normalize image luminosity by eliminating low-frequency luminosity drifts 
through the application of high-pass filtering [13]. Wang et al. introduced a technique for estimating the 
illumination function drift from the pixel values and subsequently subtracted this estimation from the 
original image [14]. However, strategies that evaluate the correction based on the entirety of the image 
may falter in differentiating luminosity variations attributable to the presence of local features (such as 
the optic disc or various types of lesions).In juxtaposition to this, the assessment of illumination and 
contrast variability ought to be conducted within the background segment (the ideal representation of a 
retinal fundus, devoid of any vascular structures or discernible lesions) of the image, and the 
compensation should be applied to the entirety of the image [13]. An illumination correction method 
based on acquisition is also employed, wherein a background image is procured by defocusing the object 
from the field of view, and this background image is subsequently utilized to execute point-by-point 
subtraction or division to rectify the non-uniform illumination [15]. Morphological filtering constitutes 
an additional methodology that postulates that the objects are of a smaller scale than the background, 
with the background being either luminously superior or inferior to the object [5]. 
 
METHODOLOGY 
The methodology for Fuzzy Contrast Enhancement (FCE) is derived from the fuzzy-based image 
enhancement technique articulated by Minh-Nguyen Vuong-Le [17]. In the context of this study, the 
HVDROPDB Dataset has been employed to evaluate and generate the outputs of the model. Figure 1 
illustrates the schematic representation of the FCE model. 
 
 
 
 
 
 
 
Figure 1: Block Diagram of Fuzzy Based Method [16] 
Initially, from the input RGB image , green color channel is used to perform the operation. The image 
undergoes conversion from RGB format to the Hue-Luminosity-Saturation (HLS) color space format. The 
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International Commission on Illumination L∗a∗b∗ color-space (CIELAB) format is predominantly 
employed for adjusting the luminosity/lightness of the image, owing to its structural design that accounts 
for the relative perceptual distinctions of the human visual system. Nonetheless, since a solitary color 
channel is utilized in this phase, employing the HLS format proves to be more efficient, as both hue and 
saturation in the HLS color space, along with a∗ and b∗ in CIELAB, remain constant within the same 
color channel; furthermore, the conversion from RGB to CIELAB incurs a greater computational expense 
compared to that from RGB to HLS. The luminosity, which ranges from 0 to 100, is fuzzified into five 
linguistic values (very dark, dark, medium, bright, and very bright) through the application of the 
Gaussian membership function. Figure 2 illustrates the graphical representation of the membership 
functions across various mean luminosity levels  [16].  
Gaussian function has been employed as the membership function, recognized as one of the most 
prevalent membership functions owing to its succinctness and smooth characteristics. The adaptive 
adjustment of the threshold, it is illustrated in Figure 2. 

 
(a) 

 
(b) 

 
(c) 
Figure 2 (a), (b), (c):  Membership functions under different mean luminosity. 
This procedure amplifies the contrast within the image, specifically enhancing the luminance of the bright 
regions while diminishing the luminance of the dark regions. 
The implementation of such regulations may lead to luminosity values deviating from their initial 
spectrum of 0 to 100 or insufficiently varying luminosity values. To address these concerns, the luminosity 
is standardized to ensure that the luminosity values comprehensively span from 0 to 100. The resultant 
image, generated subsequent to the implementation of Fuzzy Contrast Enhancement (FCE), 
demonstrates a notable enhancement in contrast, thereby facilitating the visibility of the retinal blood 
vessels. Nonetheless, this technique, when utilized in isolation, reveals certain constraints in maintaining 
intricate vascular details within regions of high luminosity. 
Figure 4 delineates the original input image in comparison with the enhanced output, accentuating both 
the advancements in vessel contrast and the specific areas where the methodology encounters difficulties 
in preserving delicate details. 
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Figure 4: Comparison of results of Enhancement methods 
An image that exhibits superior enhancement will demonstrate an elevated value for standard deviation, 
entropy, and spatial frequency. For the purpose of experimentation, a selection of ten random images has 
been made, and the resultant data are presented in Table 1. It can be deduced from the table that the 
enhancement technique employed surpasses the Contrast Limited Adaptive Histogram Equalization 
(CLAHE) method with respect to all quantitative parameters assessed. 
 
Table 1: Comparison of quantitative parameters for CLAHE vs FCE; Enhancement Method: Contrast 
Limited Adaptive Histogram Equalization (CLAHE) Vs Fuzzy Contrast Enhancement (FCE) 

Image No. StD_CLAHE StD_FCE Ent_CLAHE Ent_FCE SF_CLAHE SF_FCE 

1 0.1572 0.2555 0.7085 0.7719 0.015 0.0202 

2 0.2151 0.3128 0.7581 0.7846 0.0274 0.0354 

3 0.2514 0.2746 0.6861 0.7275 0.0159 0.0158 

4 0.2017 0.2825 0.7332 0.7617 0.0218 0.0267 

5 0.2017 0.2825 0.7332 0.7617 0.0218 0.0267 

6 0.2205 0.2609 0.6665 0.6734 0.0251 0.0287 

7 0.2234 0.2244 0.6625 0.6771 0.0135 0.0152 

8 0.2333 0.2409 0.7068 0.735 0.0134 0.0149 

9 0.2151 0.3128 0.7581 0.7881 0.0274 0.0354 

10 0.2017 0.2825 0.7332 0.7617 0.0218 0.0267 

Average 0.21211 0.27294 0.71462 0.74427 0.02031 0.02457 
StD - Standard Deviation, Ent - Entropy, SF - Spatial Frequency 
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CONCLUSION 
A rapid and effective fuzzy-based methodology for the enhancement of color images has been executed in 
this study. A comparative analysis was conducted between the proposed technique and traditional 
histogram-based contrast enhancement methodologies (including histogram equalization and adaptive 
histogram equalization), as well as the Fuzzy Logic approach, to determine the most appropriate method 
for the automated contrast enhancement of color images. The findings from the comparative analysis 
indicate that the Fuzzy Logic approach has significantly enhanced visual quality. Furthermore, this 
method exhibits a superior computational speed in comparison to existing advanced enhancement 
techniques. However, a limitation of this method is its applicability solely to color images characterized 
by low contrast and low brightness. 
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