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Abstract— Early and precise identification of agricultural pests is essential to avoid crop damage and maximize agricultural 
output. An edge-deployable pest detection system based on convolutional neural networks (CNNs) and deep learning models 
for real-time monitoring and pest infestation early detection is the premise of this research. Natively designed for deployment 
in field conditions, the system runs on low-power edge hardware like Raspberry Pi and NVIDIA Jetson Nano, carrying out on-
site image processing independent of cloud connectivity. Embedded camera-captured images of crop leaves are processed locally 
to identify and classify pest species. Moreover, the system includes an alert mechanism in real-time through visual displays, or 
smartphone push notifications to alert farmers in due time, thus minimizing yield loss. Systematic tests on public and curated 
pest image datasets showed high precision, low latency, and effectiveness in terms of resource utilization. This study highlights 
the opportunity of integrating deep learning and edge computing technologies toward intelligent agriculture, especially for 
remote or resource-poor locations. 
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I. INTRODUCTION 
The pests are one of the greatest agricultural threats to world agriculture, often leading to high losses in yield 
and economy. Conventional pest identification mostly depends on visual examination, which, apart from being 
time-consuming, is also labor-intensive and subject to human error. As the agricultural industry is more and 
more accepting of precision farming, more and more pressure has been put on smart, real- time, and highly 
accurate pest monitoring solutions that are cost-effective and scalable for enabling sustainable crop management. 
Recent developments in computer vision and deep learning have enabled automated pest classification based on 
images with promising results. However, most of the current models require a lot of computational resources, 
which restricts their deployment in rural agricultural areas where high-performance hardware and reliable 
internet connectivity are scarce. To address these challenges, we suggest an edge-deployable visual alert and pest 
detection system that embeds AI-based pest recognition into the field domain itself, thus promoting accessibility 
and responsiveness. The system employs lightweight convolutional neural network (CNN) models that are 
optimized for running on embedded platforms like Raspberry Pi and NVIDIA Jetson Nano. The system takes 
crop leaf images through attached cameras and processes them on-site to detect and classify pests. Crop 
productivity is severely jeopardized by pest infestations that can lead to high yield losses and economic losses for 
farmers. Conventional pest identification techniques are highly dependent on visual inspection, which is time-
consuming, labor-intensive, and subject to errors. With the development of artificial intelligence (AI) and deep 
learning, scientists have started using these technologies to create intelligent, autonomous pest detection systems 
with a view to improving crop protection and encouraging sustainable agriculture. Artificial intelligence-based 
pest detection systems use image processing, machine learning, and deep learning models— particularly 
convolutional neural networks (CNNs)—to detect and classify pests with very high accuracy from images of crops. 
AI technologies allow real-time detection, decrease reliance on chemical pesticides, and facilitate timely 
interventions, eventually reducing crop losses and enhancing food security [1]. Edge computing has also sped up 
the deployment of such intelligent systems into actual agricultural environments. Albanese et al. [1] showed a 
deep neural network (DNN)- based insect detection system deployable on edge devices such as Raspberry Pi, 
providing low-latency image classification in real-time in the field. Likewise, MSFNet- CPD proposed by Zhang 
et al. [2] integrates visual and textual information through a multi-scale cross-modal fusion approach for reliable 
pest identification, enhancing performance even under harsh environmental conditions. Venkateswara and 
Padmanabhan [3] improved pest classification with autoencoders and CNNs and reinforced segmentation 
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methods like RGB colour filtering and YOLOv3 object detection to achieve a 84.95% accuracy. Bompani et al. 
[4], in turn, tested CNN-based pest detection on ultra-low-power microcontrollers and proved to be highly 
accelerated in speed and power efficiency with GAP9 SoC compared to the earlier platforms. In greenhouses 
and other controlled settings, AI-based systems were applied not just for pest identification but even population 
forecasting. Kapetas et al. [5] proposed a mixed system integrating real- time monitoring and ARIMAX-based 
forecasting models to improve pest management approaches. 
 
II. MOTIVATION OF THE RESEARCH 
The drive behind this study is the growing contribution of pest infestations to world agriculture, resulting in 
large crop losses, lower productivity, and higher levels of pesticide use. Conventional methods of detecting pests—
visual inspection and manual scouting—are time-consuming, labor-intensive, and inefficient in large-scale 
production environments and are not consistent. There is a pressing requirement for scalable, accurate, and real-
time monitoring solutions for pests that can work independently in the field. 

 Reducing Crop Loss Through Timely Detection 
Through the use of edge-based AI models, farmers will be able to identify infestation by pests in the early stages 
and instantly take measures to remedy the situation, thereby minimizing crop destruction and yield loss. This 
reduces the need for broad-spectrum pesticides and promotes sustainable agriculture. 

 Empowering Farmers with Real-Time Alerts 
The inclusion of visual alert methods like LEDs, alarms, or mobile alerts guarantees farmers receive 
instantaneous notification of pest infestation. This facilitates better- informed decision-making, raised 
interaction with smart tools, and responsiveness to pest risks. 

 Sustainability and Accessibility 
Running pest detection models on low-cost, resource- limited platforms like Raspberry Pi and Jetson Nano makes 
the technology accessible to marginal and small farmers, particularly in remote villages where there is limited 
internet connectivity. These models are run without requiring constant cloud connectivity, hence minimizing 
operational costs and supporting sustainable agriculture. 
 
III. CONTRIBUTIONS 
The core contribution lies in the model development and implementation of a predictive model involved: 

 AI-Based Pest Detection Model: 
ML model that accurately predicts heart disease risk, enabling early diagnosis and personalized treatment. 

 Field Validation and Dataset Expansion 
The model is validated using curated and publicly available datasets (e.g., IP102), and performance metrics such 
as accuracy, latency, and energy efficiency are assessed. 
 
IV. REALTED WORK 
Albanese et al. (2021) introduced an edge-based energy- efficient pest detection system for precision agriculture 
based on deep neural networks (DNNs) implemented on smart traps with onboard hardware [1]. Their scheme 
uses low-power platforms like Raspberry Pi and Intel Neural Compute Stick to classify pests in real time within 
pheromone traps without relying on continuous cloud connectivity. Three varying CNN architectures LeNet-5, 
VGG16, and MobileNetV2 were trained and tested with the highest classification accuracy achieved by VGG16. 
Zhang et al. (2025) put forth MSFNet-CPD, a Multi-Scale Cross-Modal Fusion Network for strong crop pest 
detection by combining both visual and textual features.The model combines high-quality visual information 
with text descriptions to address challenges such as image quality degradation and subtle pest differences. They 
also introduced the ACIE strategy to produce a new multi-target pest dataset (MTIP102), which improved 
generalization in intricate real- world environments [2].Venkateswara and Padmanabhan (2025) introduced a 
deep learning-based monitoring and classification method for pests using Convolutional Neural Networks and 
Autoencoders for the improvement of accuracy in detecting pests in smart agriculture. Using the IP102 dataset 
consisting of 82 classes of pests, their system utilized Autoencoders to balance the dataset and YOLOv3 to detect 
objects. Segmentation was conducted using RGB color codes and Grab cut to segment pests and classification 
through ResNet-based CNN. This coupled framework attained accuracy of 84.95%, and segmentation accuracy 
was based on IoU at 80%.[3]. Bompani et al. (2024) investigated on-device pest recognition based on a 
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heterogeneous multi-core microcontroller that could speed up CNN inference with negligible energy 
expenditure. They contrasted a standard Viola-Jones algorithm with a CNN model for codling moth detection. 
The system, deployed in smart traps, carried out image processing locally to lower dependence on energy-hungry 
cloud communication [4]. Kapetas et al. (2025) proposed an integrated AI-based system for detecting pests and 
population prediction in greenhouses on the example of black aphids. In their solution, three variants of the 
YOLO deep learning model were applied, where YOLOv10 had the best mAP50 of 89.1% at 1600×1600 
resolution. The training dataset was augmented from 220 to 579 labelled images [5]. Zhao et al. (2022) 
introduced a complete convolutional neural network model boosted with a parallel attention mechanism (PCSA) 
for crop pest detection in intricate agricultural settings. The model integrated spatial and channel-wise attention 
modules in a complete ResNet-50 architecture to enhance feature extraction and recognition efficiency. They 
built a bespoke dataset of 10 prevalent pest species and applied offline data enhancement to grow the dataset to 
26,225 images. The best-performing final model attained an accuracy of 98.17%, surpassing existing models such 
as DenseNet and VGGNet variations [6].. Li et al. (2023) suggested an AI-based pest detection system based on 
a hybrid model combining YOLOv5 object detection and EfficientNet classification to detect and classify pests 
in real-time. The approach stresses field deployment with strong detection even under changing lighting 
conditions and cluttered backgrounds [7]. Abbas Abbas et al. (2023) introduced a machine vision-based method 
for detecting pests with Convolutional Neural Networks (CNNs) [8] and morphological analysis. Their system 
emphasized the detection and classification of two serious pests—Aphis gossypii and Bemisia tabaci—of cotton 
crops based on high-resolution images and a specially designed Zhang et al. (2022) created an automatic detection 
model [10] based on AI for identifying more than one pest species on tomatoes with a light neural network 
appropriate for edge deployment 
 
V. METHODOLOGY 
The methodology typically involves on integrating machine learning, edge computing, and a visual alert system 
to detect pests in real time and inform field workers or farmers. 
 

 Data Acquisition: 
Datasets Dat employed are pest image datasets like IP102 and MTIP102, which are labeled images of different 
species of pests that infest different crops. Images were recorded using embedded cameras set up in the field. 
These datasets feature high- and low-resolution images across different environmental conditions (e.g., 
illumination, background noise). Image data has been loaded into the Python environment through libraries 
like OpenCV and Pandas for processing and annotation. Preprocessing operations are carried out to provide 
clean, labeled input during training deep learning models. 
 

 Data Preprocessing: 
Data preprocessing involved several critical steps to ensure the quality and suitability of the dataset for machine 
learning and Digital Twin modeling. Initially, missing values were handled by imputing them with appropriate 
strategies, such as mean imputation for numerical columns like cholesterol (chol) and heart rate (thalach). Next, 
categorical variables (such as sex and cp) were encoded into numerical values using techniques like one-hot 
encoding to make them usable by machine learning algorithms. Data pre-processing is done for consistency with 
cleaning using handling missing values and outliers as well as normalization Features were then scaled using 
standardization to normalize the input variables and ensure that the models could effectively learn from the data 
without being biased by the magnitude of certain features. 
 

 Feature selection: 
Feature selection played a crucial role, in deep learning models, the choice of features is taken care of 
automatically through convolutional layers that learn hierarchical and abstract image features from the input 
images. But Grad-CAM (Gradient- weighted Class Activation Mapping) visualization was employed to confirm 
the image areas in which the model concentrates during prediction. This gave insight into which features e.g., 
the pest's body shape, color, wings, or patterns to the classification decision. Knowledge of these characteristics 
facilitates tuning the architecture of the model and for future incorporation with explainable AI modules. 
 



International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 6s, 2025  
https://www.theaspd.com/ijes.php  
 

951 

 Model Training: 
Training was conducted using light-weight, edge- compatible CNN models like MobileNetV2, VGG16, and 
LeNet because they required low computation but were highly accurate. The data was divided into 80% train 
and 20% test sets. Transfer learning was utilized wherein pre-trained weights of models trained on ImageNet 
were fine-tuned using the pest dataset. Training time was greatly minimized with this without a drop in accuracy. 
The class categorical cross- entropy loss function and the Adam optimizer were utilized. The final training 
architectures were tuned for batch sizes and learning rates to avoid overfitting and underfitting. The training was 
implemented using TensorFlow and PyTorch frameworks, and early stopping to avoid degradation in the model's 
performance. 
 
E.  Model Validation and Evaluation: 
The learned pest detection models were thoroughly tested to yield high accuracy, stability, and real-time field 
usability. The evaluation metrics used were accuracy, precision, recall, F1-score, and AUC-ROC to measure the 
classification performance of the model on unknown pest images. K-fold cross-validation was used to avoid 
overfitting and model generalization. Apart from these measurements, inference latency and memory 
consumption were tested on edge devices like Raspberry Pi and Jetson Nano, verifying they could process images 
within less than 150 milliseconds per frame. Quantized models (e.g., INT8) had high accuracy with reduced 
computational load, which made them suitable for low-power edge environments. Validation also involved on- 
field real-time testing under field conditions to evaluate alert responsiveness and dependability, proving that the 
system was able to effectively detect pests and initiate timely alerts with low false positives. 
 

 
FIGURE 1: Various Module Architecture 

 
F. Edge Deployment: 
After model validation and performance testing, the trained pest detection model was made ready for edge 
deployment on edge computing devices to facilitate real-time, in-field functionality. Edge deployment entails 
model optimization so that the model could operate effectively with low-power hardware like Raspberry Pi 4, 
NVIDIA Jetson Nano, or specialized microcontrollers like GAP8/GAP9 with support for CNN accelerators. 
These products were chosen due to their cost-effectiveness, small size, energy efficiency, and capacity to carry out 
on-device inference without dependence on cloud connectivity. To make the model smaller and lower the 
computational burden, the trained deep neural network model (e.g., MobileNetV2) was first quantized to a 
lightweight model via model quantization, which replaced floating-point. 
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Quantization was performed using TensorFlow Lite or PyTorch Mobile converters without sacrificing accuracy 
while dramatically lowering memory consumption and inference time. Post-training quantization was chosen 
because it is easy to implement and easy to deploy on field hardware. On boards such as the Raspberry Pi, 
OpenCV and TensorFlow Lite Interpreter were employed for image capture and inference. For NVIDIA Jetson 
Nano, the TensorRT framework was employed for quicker GPU- accelerated inference. 
 

 
FIGURE 2: Various samples of pests for each dataset class. 

 
G. Visual Alert Mechanism: 
On the detection of a pest, the system instantly triggers a visual alarm system to alert local farmers or agricultural 
workers. The alert system involves a mix of visual signals (like high-brightness LEDs), audio signals (via 
piezoelectric buzzers), and wireless alerts transmitted to mobile phones or control centers through 
communication standards like Wi-Fi, GSM, or low-power wide-area networks (LPWAN) like LoRa. The type of 
alert can be configured by deployment environment—LEDs and buzzers for small farms with manual monitoring, 
and mobile notifications for larger, remotely monitored farms. The logic for alerts is built into the firmware of 
the edge device, which constantly watches the output of the pest detection model. The moment a detection 
confidence reaches a pre-set criterion (e.g., 90%), an alert is issued in real time. This facilitates real-time 
intervention through localized pesticide spraying or physical pest control, minimizing wastage of pesticides as 
well as environmental pollution. The alert system was implemented under diverse lighting and noise conditions 
to guarantee visibility and audibility in day and night, as well as in noisy environments. Battery-backed operation 
guaranteed alerts continued to function even during power failures. 
 
VI. CONCLUSIONS 
This work introduces a scalable and robust edge-deployable visual alarm and pest detection system for real-time 
farm monitoring, integrating embedded hardware with light-weight deep learning models to provide a farmer-
friendly and scalable solution, especially for resource-scarce environments. The system produces robust 
classification accuracy with low energy use and high-speed inference on edge devices, and its onboard visual alert 
mechanism offers real-time, actionable alerts to enable quick intervention and reduce crop loss. With no 
requirement for cloud infrastructure, it is optimally designed for remote field deployment. Upcoming 
improvements are to integrate multi-modal inputs like environmental information (e.g., temperature, humidity) 
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to enhance detection resilience under different conditions, and to scale the system with IoT integration and 
drone-based platforms to improve scalability and coverage of monitoring. In general, the solution presented 
represents a remarkable leap in data-driven, intelligent crop protection in the field of digital agriculture 
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