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Abstract: 

This research investigates the application of machine learning to predict severe side effects, including cardiovascular 

diseases (CVDs), pulmonary diseases, hormonal imbalances, and liver damage associated with anabolic-androgenic 

steroid (AAS) consumption in human bodies. It further analyses how the steroids consumed by humans are not 

metabolized fully and are excreted through urine and feces which eventually hampers the environment through water 

and land pollution. Utilizing datasets focused on common AAS drugs (Anadrol, Oxandrolone, Clenbuterol, Deca 

Durabolin, and Dianabol), the study developed and optimized predictive models to address critical AAS-related 

health risks. A novel hybrid algorithm, combining Grid Search Cross-Validation with Support Vector Machines 

(SVM) and Multilayer Perceptron (MLP), achieved a maximum accuracy of 91% for predicting hormonal 

imbalances and 88% for CVD and Pulmonary diseases, outperforming baseline models. For liver damage prediction, 

Gradient Boosting and a hybrid RNN+Gradient Boosting approach demonstrated superior performance. Analysis of  

hormonal imbalances further highlighted the efficacy of RNN+LSTM and MLP models in capturing non-linear and 

temporal dependencies, surpassing PLSR. These findings determine the potential of machine learning to identify 

individuals at high risk for AAS-induced health complications, facilitating timely interventions. Future research 

should expand the scope of AAS drugs, incorporate additional risk factors, and also determine the impact of steroids 

on environment in terms of water and land pollutants. This study is validating the results with respect to diverse 

datasets to enhance clinical applicability and improve the prevention and management of AAS-related adverse 

health outcomes and environmental impacts. 
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INTRODUCTION 

The natural steroids are required by the body to perform different functions. These steroids play a role 

in the maintenance and strengthening of tissues, muscles, and bones. They also are required for 

functions like immunity, stress response, and metabolism. AAS are the drugs that exhibit similar effects 

to testosterone. AAS is used to treat ailments like hormonal imbalance and muscle wasting [1]. It is 

important to differentiate between AAS and naturally produced steroids as the former shows side 

effects. They interrelate with the body's processes and endocrine system [2]. AAS shows various side 

effects. AAS is popular with the general population and athletes for performance-boosting and physical 

appearance [3]. AAS manifests its effects through several interlinked mechanisms. Excessive doses, 

often exceeding the body's natural testosterone production, impair controlling mechanisms and disrupt 

the delicate hormonal balance. This leads to reduced natural hormone production, causing testicular 

atrophy [4]. AAS use also intervenes with the Hypothalamic-Pituitary-Gonadal (HPG) axis, the hormone 

regulatory loop regulating testosterone production. High levels of synthetic hormones signals the brain 

to reduce the HPG axis, causing long-term hormonal imbalances. Some AAS can transform into 

estrogen, causing feminizing side effects in men. AAS may also significantly cause damage to various 

organ systems. They negatively affect cholesterol levels, increasing the risk of CVD, stroke, and high 
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blood pressure, and potentially causing heart muscle damage. AAS are hepatotoxic, they may lead to 

liver dysfunction, cholestasis, and even liver cancer. AAS use can be associated with mood swings, 

aggression, and many other psychological conditions. Other potential effects include acne, hair loss, 

prostate enlargement, and fluid retention, and in adolescents, premature halting of bone growth. The 

impact levels and type of side effects vary depending on the specific AAS, dosage, duration of use, 

individual genetics, age, and other health factors [5]. Various computational models can be used to 

predict the toxicity of different AAS and their potential side effects [6]. These approaches fall under the 

canopy of in silico toxicology, which employs computational methods to analyze chemical safety [7]. 

The steroids consumed by humans are not metabolized fully and are excreted through urine and feces 

which eventually hampers the environment through water and air pollution [2]. These steroids and 

their metabolites enter into the sewage systems and also reach at the wastewater treatment plants [3]. 

The traditional methods of wastewater treatment are not advanced to completely filter out the 

pharmaceutical residues. Slowly, the instances of steroids are also discharged into natural water 

resources such as lakes, rivers, and estuaries [4]. This continuous release of steroids into natural water 

resources contributes to contamination of marine ecosystems and poses risks to water biodiversity [5]. 

Secondly, the thoughtful ecological consequences of steroid usage is endocrine disruption in wildlife. 

Steroids can interfere with the hormonal systems of living organisms and alter them easily. When fish, 

amphibians, or invertebrates are exposed to steroid contaminants in sea or rivers, their reproductive 

systems are severely affected [24]. The disruption of endocrine systems destabilizes the entire aquatic 

food webs. Steroid pollution is not limited to aquatic environment but it also affects earthly ecosystems 

through soil contamination. Soils exposed to steroids-based contaminants may have disruptions in their 

microbial communities which is responsible for nutrient cycling, decomposition of organic matter, and 

soil health [25]. The steroid compounds are absorbed by crops and eventually enter into the food chain. 

 

Existing literature 

The existing studies are highlighting the adverse effects o steroids on human body and environmental 

bodies such as water and soil bodies. This section is covering the important chunks of the existing 

literature as follows. In [9], the researchers claim reduced functional brain connectivity among the users 

of AAS. The effect was prominent between areas critical for emotional and cognitive regulation 

(amygdala-DMN, DAN-SFG/IFG/ACC). The researchers claim the correlation between these 

reductions and AAS dependency, and lifetime exposure. The findings in this research state that AAS 

use disturbs brain networks associated with behavior and emotions. In [10], the correlation between 

long-term use of AAS high dosage on the brain and cognition is studied. The researchers devised a 

Machine learning model that can predict brain age from brain scans. The comparison was made 

between AAS users and NON-users. The study shows that the higher predicted brain age was shown by 

AAS users compared to controls, and this was associated with dependency and longer use. In [11], the 

researcher states that various health hazards are associated with the consumption of AAS though it is 

effective in athletic performance boosting and aesthetic benefits. The action mechanism of AAS and its 

side effects in terms of oxidative stress, apoptosis, and protein synthesis changes are studied and these 

factors are considered as the key drivers of damage. In [12], the research indicates that AAS abuse is 

prevalent among men, but little is known about its side effects. In a study, a group of men who used 

AAS were compared to a much larger group of men who did not. The study concludes that AAS use is 

linked to increased death, illness, and common side effects, and is a public health problem. In [13], 

AAS are widely used as performance boosters in sports. These doses are often high and not medically 

prescribed. AAS pharmacokinetics, including absorption, transport, and how they work in cells through 

the androgen receptor, are investigated in this review. In [14], it is stated that AAS use among gym 

members is a growing concern. This encouraged the researcher to study assessing its prevalence and 

effects in Eastern Province, Saudi Arabia. A survey of male gym users showed that AAS use was found 

in a significant portion of those surveyed, with the highest use in the 26-30 age group. Little awareness 

of the negative effects was shown. Psychiatric problems, acne, hair loss, and sexual dysfunction were 

reported by users, who often obtained AAS from trainers and friends. In [15], it is stated that AAS use, 
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estimated to affect a small percentage of people worldwide, is common among male athletes and those 

choosing a muscular physique, but there's little strong evidence on how best to check AAS use. The 

research identifies adverse effects including problems with the testicles, infertility, and heart risks, with 

indicators such as low HDL cholesterol and unexplained high red blood cell count. It also states that 

the withdrawal symptoms can be caused by stopping AAS use. In [16], it is stated that AAS use, driven 

by performance goals, affects a small percentage of the US population, posing a public health issue 

because of the widespread negative effects. This review looks at how AAS works and its impact on 

different body systems, demonstrating oxidative stress, cell death, and changes in protein synthesis. The 

study concludes that the cardiovascular and reproductive systems are most often affected by AAS. In 

[17], it is stated that the use of AAS and other performance-enhancing drugs is a growing public health 

concern, linked to various physical and mental health problems. This online survey of male gym-goers 

studies usage patterns and AAS use disorder (AASUD). Results showed that a significant portion of 

those surveyed met the criteria for moderate-severe AASUD, which was predicted by longer use and 

higher average dose of AAS in the past year. It is concluded that moderate-severe AASUD is relatively 

common among male AAS users and is linked to how long and how much AAS is used. In [18], it is 

stated that AAS use is common among bodybuilders, but the evidence on its effects is inconsistent. This 

systematic review looked at 22 studies of bodybuilders from 1987-2022, mostly case-control studies. The 

study shows AAS users showed higher liver enzymes and lower follicle-stimulating and luteinizing 

hormones. Review in [19] examines how AAS and SARMs work, looks at how well some SARMs have 

worked in clinical trials, and discusses possible problems and harmful effects, with the goal of figuring 

out if SARMs are really safer and exploring what research should be done in the future. In [20], it is 

stated that while diverse AAS use is recognized, research understanding this variation is limited. This 

study identified four different AAS user groups (fat loss, general fitness, muscle/strength, and specific 

goals) and their motivations. These findings highlight the need for public AAS information and inform 

healthcare providers about varying motivations and risks, emphasizing harm reduction and safe 

injection practices. In [21], it is stated that AAS use is increasingly common, causing many hormonal 

and metabolic disorders that can permanently damage various body systems. This review gathers existing 

knowledge and contemporary research on the harmful effects of AAS, especially on the nervous system. 

The study in [22] looked at data from Canadian teens and young adults recruited online, examining 

AAS use, reasons for use, side effects, and related behaviors. Results showed that a small percentage had 

used AAS at some point. Many reported dependence and negative effects, though few mental health 

effects were noted.In [2], the research is focusing on the adverse effects of stredoids on water bodies. 

These steroids and their metabolites enter into the sewage systems and also reach at the wastewater 

treatment plants. In [3], the authors are discussing the presence of steroid hormones in aquatic 

environment which can hamper water ecosystem badly. In [4], the impact of steroids on wastewater 

effluents are analysed. In [6], the study is examining the effects of steroids in soil-plant systems. Steroids 

are entering into the soil bodies and then from soil, entering into plant system which is again consumed 

by the humans. In [24], the authors are investigating the accumulation of steroid hormones in soil and 

in aquatic environment. The existing literature shows that steroids consumed by humans are not only 

impacting their bodies but also spoiling environmental bodies such as water and soil. 

Key contributions of the proposed work: 

• Prediction of the medical conditions, namely cardiovascular disease (CVD), pulmonary disease, 

and liver damage with NON-medical usage of AAS. 

• Analyses of adverse impact of steroids on soil and water bodies as well. 

• Inclusion of diverse datasets for concrete results and to mitigate biased predictions. 

• Development of a novel hybrid machine intelligence-based method to predict medical 

conditions namely cardiovascular diseases (CVD), pulmonary diseases, and liver damage. 

• Consideration of the most commonly used AAS namely Anadrol (Oxymetholone), 

Oxandrolone (Anavar), Clenbuterol, Deca Durabolin, and Dianabol. 

The paper is structured into four sections starting from introduction section (covering background 

study, related work and key contributions), followed by the proposed methods in second section. The 
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third section is evaluating the results and fourth section is summarising the outcomes of the proposed 

work. 

Proposed Methods 

In the proposed research, we analyze the interrelation between AAS usage and the occurrence of 

negative side effects on human bodies and environmental bodies. Medical conditions, namely 

cardiovascular diseases (CVD), pulmonary disease, and liver damage, have been considered for the 

research study. For environmental impact, water and soil bodies are considered. The focus is on five 

commonly used AAS: Anadrol (Oxymetholone), Oxandrolone (Anavar), Clenbuterol, Deca Durabolin, 

and Dianabol. This research is focusing on the development of ML based advanced method for the 

determination of side effects of steroids. The proposed model adopts the powerful combination of 

SearchGrid CV, SVM, and multilayer perceptron [23]. 

DATASET DETAILS 

Dataset-i: dataset obtained from medical research firm considering co -morbidities like 

cvd and pulmonary diseases. 

The data in this study has been obtained from a medical research firm under a strict Non-Disclosure 

Agreement (NDA). This dataset comprises information related to individuals who have used and 

consumed AAS. The dataset contains information related to the pattern of usage of these drugs and 

observed side effects. The following fields are present in the datasets. 

▪ Drug_name indicates the name of the AAS. 

▪ Usage_duration is the duration of AAS use (in months). 

▪ Monthly_Avg_Usage_Frequency indicates the number of times the individual used the 

AAS per month. 

▪ Age represents the age of the individual. 

▪ Gender is the gender of the individual. 

▪ Presence or absence of CVD and pulmonary disease. 

Dataset ii: u.s. Department of health & human services (considering hormonal 

imbalance caused due to aas usage) 

This study also utilizes a proprietary dataset obtained from U.S. Department of Health & Human 

Services (https://catalog.data.gov/dataset/national-household-survey-on-drug-abuse). The following are 

the dataset fields: 

▪ Unique_ID is a unique identifier for each individual record. 

▪ Drug_Name is the name of the AAS used by the individual. 

▪ Usage_Duration shows the duration of usage 

▪ Dosage is the reported dosage of the AAS used. 

▪ The method of AAS administration is either oral, intramuscular, or transdermal). 

▪ Testosterone level and Estrogen level. 

Dataset Iii: Dataset Obtained From Kaggle (Considering Liver Damage Caused Due To 

Usage Of Aas) 

In addition to the primary dataset obtained from the medical research firm and U.S. Department of 

Health & Human Services, this study also incorporated data from a publicly available dataset sourced 

from Kaggle (https://www.kaggle.com/datasets/cyberpiyu/steroiddataset/data). 

The Kaggle dataset contains the following fields, providing a cross-sectional view of individuals' 

physiological states: 

▪ Steroid_Type is a categorical variable indicates the specific type of steroid used by the 

individual. 

▪ Gender is categorical variable represents the gender. 

▪ Candidate_Age is a numerical variable. 

▪ Pulse_Level is the numerical variable that represents the pulse rate. 

▪ Body_Fat_Level is numerical variable represents the individual's body fat percentage. 

▪ Adrenaline_Level: This numerical variable represents the adrenaline level. 

https://www.theaspd.com/ijes.php
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▪ Alanine Aminotransferase (ALT) level: This is a numerical variable showing ALT Level 

▪ Aspartate Aminotransferase (AST): This is a numerical variable showing AST Levels. 

The following are the dataset details for measuring the environmental impact: 

Dataset Iv: The “Great Lakes Tributary Pharmaceutical Water Samples From 2019” dataset (U.S. 

Geological Survey, Krall & Elliott 2022) provides details on the steroid impacts on the tributaries to the 

great lakes. It includes sample metadata (date, site coordinates, upstream land use), analyte 

concentrations in water bodies, detection method details and quality control metrics. The dataset is also 

paired with another USGS release for measuring pharmaceuticals in coastal waters. 

dataset v: A robust dataset ideal for analyzing pharmaceutical (including steroid) contamination in soil 

is the “Pharmaceuticals in the Environment” database maintained by the German Environment Agency 

(Umweltbundesamt – UBA). This extensive resource measures the environmental concentrations 

(MECs) of active steroids and pharmaceutical ingredients along with their metabolites across various 

matrices, including biosolids, sewage sludge, sediment, manure, and surface soils. 

Diseases Identified In Human Bodies 

From the given datasets, the ailments such as cardiovascular diseases (CVD), pulmonary diseases, 

hormonal imbalance and liver damage are considered for the research. This research focuses on these 

diseases and analyzes the occurrence of these medical conditions among the individuals who consume 

AAS. The presence or absence of each condition is examined as a key marker of adverse health 

outcomes from AAS use. The study aims to understand the risk of above-mentioned health conditions 

caused due to the use of AAS. These three conditions are significant potential health consequences and 

are therefore the primary focus of the analysis. The effect of AAS on the following ailments has been 

studied in this research [25]. Fig.1 shows the count of morbidity found against different AAS drugs. 

▪ CVD is a binary variable (yes/no) that indicates the presence/absence of cardiovascular 

disease (CVD) in the individual. 

▪ Pulmonary_diseases: A binary variable indicating the presence or absence of pulmonary 

diseases in the individual (Yes/No). 

▪ Liver_Damage: A binary variable indicating the presence or absence of liver damage in the 

individual (Yes/No). 

▪ Hormonal Imbalance: Levels of Testosterone and Estrogen. 

 
Fig 1: AAS drugs consumption vs morbidity 

Data Pre-Processing 

This research employed a multi-faceted data preprocessing approach to ensure the robustness and 

reliability of the predictive models. The preprocessing steps were tailored to address the unique 

characteristics of each of the three datasets utilized: the proprietary dataset from the medical research 
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firm, the public dataset from the U.S. Department of Health & Human Services (NSDUH), and the 

Kaggle 'steroiddataset'. 

Preprocessing of dataset-1 (Medical research firm dataset): 

Data cleaning: Missing values were addressed using the mean. Data types were verified and corrected as 

needed. 

Feature engineering: Categorical variables (Drug_name, Gender) were encoded using one-hot 

encoding, label encoding. 

Data standardization/normalization: Numerical features were standardised using StandardScaler. 

Preprocessing of dataset-2 and 3 (NSDUH Dataset): 

Data selection and filtering: Relevant variables related to AAS use; cardiovascular markers, hormonal 

profiles, and administration routes were selected. Data was filtered to include only records relevant to 

the study's scope. 

Data cleaning: Missing values were handled using the mean. Data inconsistencies and errors were 

identified and corrected. 

Feature engineering: Categorical variables (Drug_Name, Administration_Route) were encoded using 

one hot encoding. Testosterone and Estrogen levels were processed to extract relevant numerical 

features. 

Data integration: The data was processed to have common variables with dataset 1, to make the data 

useable for the machine learning model. 

Data standardization/normalization: Numerical data was scaled using StandardScaler. 

Preprocessing of dataset 4 & 5 (Water and Soil damage due to steroids): 

Data cleaning: Missing values were handled using mean. Data types were verified and corrected. 

Feature engineering: Categorical variables were encoded using One hot encoding. 

Data standardization/normalization: Numerical features were standardized or normalized. 

Data integration: The dataset was processed to align with the feature space of the other datasets, 

facilitating comparative analysis and potential model validation. 

 

DARA PREPROCESSING: 

Data partitioning: Each dataset was partitioned into training (80%) and testing (20%) sets to evaluate 

model performance. 

Feature selection: Feature importance from tree-based models was used to identify the most relevant 

features. 

The Morbidity prediction on Dataset-I, Dataset-II, and Dataset-III. 

The Morbidity Prediction on Dataset I for CVD and Pulmonary Disease 

The following algorithms were applied to the Dataset I mentioned in the Dataset Section. The methods predict the 

occurrence of CVD and pulmonary disease due to long-term usage of AAS. 

SVM- Support Vector Machines (SVMs) can predict AAS side effects by identifying an optimal 

hyperplane that best separates data points indicating individuals with and without the specified 

condition (CVD, pulmonary disease, or liver damage). The algorithm maps data points to a high- 

dimensional space where this partition is easier. Features like AAS type, Gender, Usage duration in 

year, Age category, Monthly average usage frequency decide the placement of these points. SVMs, using 

the Linear kernel, identify the most relevant features for prediction and can handle both linear 

relationships. The SVM learns to classify new individuals based on their feature values, predicting their 

likelihood of suffering the side effect. The model's performance is calculated using metrics like accuracy 

and F1-score to ensure its reliability in predicting these adverse health effects. 

 

Decision Trees 

Decision Trees forecast AAS side effects by creating a tree-like structure of decision rules based on 

features like AAS type, gender, usage duration, age category, and monthly usage frequency. The 
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algorithm recursively divides the data into subsets based on the feature that best segregates individuals 

with and without the specific condition (CVD and pulmonary disease). Each node in the tree represents 

a decision based on a feature, and each branch leads to an added decision or a final prediction 

(presence or absence of the side effect). The tree learns these rules from labeled data, aiming to 

maximize the segregation of individuals with and without the condition at each split. By traversing the 

tree based on an individual's feature values, the model predicts their chances of experiencing the side 

effect. Performance metrics like accuracy and F1-score are used to evaluate the tree's predictive 

capabilities. 

Gradient boosting- Gradient Boosting predicts AAS side effects by linking multiple "weak" decision 

trees into a single "strong" predictive model. Unlike a single decision tree, Gradient Boosting builds 

trees sequentially, with each tree trying to correct the errors of its predecessors. It focuses on the data 

points incorrectly classified by previous trees, giving them more weight in the subsequent tree's training. 

Features like AAS type, gender, usage duration, age category, and monthly usage frequency are used to 

build these trees. The algorithm recursively adds trees to the ensemble, reducing a loss function that 

calculates the difference between the predicted and actual side effects (CVD, pulmonary disease). The 

final prediction is made by combining the predictions of all the individual trees. This ensemble method 

often leads to higher accuracy and better generality compared to a single decision tree. Performance is 

evaluated using metrics like accuracy and F1-score. 

 

PROPOSED APPROACHES 

Proposed hybrid approach-1 (Applied on dataset-1 and dataset-4) 

A hybrid MLP-SVM model was developed for forecasting negative side effects. First, a two-hidden-layer 

MLP with 64 neurons and ReLU activation was defined and its hyperparameters optimized using 

GridSearchCV on combined training and validation data. Features were then obtained by passing all 

data, including the test set, through the trained MLP, using the last hidden layer activations as the new 

feature set. Next, an SVM with an RBF kernel was chosen and its hyperparameters were tuned via 

GridSearchCV. The SVM was then trained on the combined training and validation data using the 

extracted MLP features. Finally, the MLP-derived features for the held-out test set were used to predict 

side effects, and the model's performance was calculated using accuracy, precision, recall, and F1-score. 

The following architecture diagram (Fig.2) depicts the flow of the Proposed Hybrid Algorithm to predict 

CVD and Pulmonary diseases. 

 
Fig II: The proposed hybrid algorithm to predict CVD and pulmonary diseases 

 

Algorithm Steps: 

Step I: MLP Architecture Definition 

Number of hidden layers: 2 

Number of neurons in each hidden layer :64 

Activation function for hidden layers: ReLU 
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1 

1 

Input Layer to First Hidden Layer: 

Let x=[x1, x2, x3….. xn] be the input vector (where 'n' is the number of input features). 

For each neuron j [where j=1, 2, …..64] in the first hidden layer the weighted sum is given in 

the Eq-1: 
 

 

 

Where 

Weighted Sum=zj(1)=∑i=∑𝑛 𝑤𝑗𝑖(1)xi+bj(1) 

 

 

▪ 𝑧𝑗(1) is the weighted sum for neuron j in the first hidden layer. 

▪ 𝑤𝑗𝑖(1) is the weight connecting input feature xi to neuron j in the first hidden layer. 

▪ 𝑏𝑗(1) is the bias for neuron j in the first hidden layer. 

 

1. For the Activation function ReLU, the equation is given as Eq-2. 

Activation Function=𝑎𝑗(1) = 𝑅𝑒𝐿𝑈(𝑧𝑗(1)) = 𝑚𝑎𝑥(0, 𝑧𝑗(1)) 
2. First hidden layer to second hidden layer 

Now, the activations from the first hidden layer become the inputs to the second hidden layer. 

For each neuron k (where k=1, 2, ..., 64) in the second hidden layer the weighted sum is given by Eq-3 

Weighted Sum=𝑧𝑘(2) = ∑𝑗 = ∑64 𝑤𝑘𝑗(2) 𝑎𝑗(1) + 𝑏𝑘(2) 
Where:  

▪ zk(2) is Output of neuron k in layer 2. 

▪ wkj(2) is Weight from neuron j (layer 1) to k (layer 2). 

▪ aj(1) is Output of neuron j in layer 1. 

▪ bk(2) is Bias of neuron k in layer 2. 

3. Second Hidden Layer to Output Layer: 

Let y be the output of the MLP (predicting the side effect). The output is given in the Eq-4 

 

Where: 

𝑛 
𝑗=1 𝑤𝑖𝑗 (3)𝑎𝑗(2)+bi(3) 

 

yi is the Output of neuron i in the output layer. 

Wij is the Weight from neuron j (layer 2) to i (output layer). 

aj(2) is the Output of neuron j in the second hidden layer. 

bi(3) is the Bias of neuron i in the output layer. 

The output of this layer is MLP-derived features extracted forms the feature set. 

Step II: Using Grid Search CV for MLP hyperparameter tuning 

GridSearchCV with cross-validation has been used on training and validation sets combined to find the 

best pattern of MLP hyperparameters. The validation set is used during GridsearchCV to prevent 

overfitting on the test set. 

In this step, the loss function given in the Eq-4 has been minimized. 
L(Ø)= 1 ∑𝑁  𝑙𝑜𝑠𝑠(𝑦𝑖, 𝑦𝑗(Ø)) 

Where: 
𝑁  𝑖=1 

• L(θ) is the loss function, dependent on the model parameters (θ - weights and biases). 

• N is the number of samples in the training subset. 

• loss(yi,yj(θ)) is the loss for a single sample, comparing the actual output (yi) to the 

predicted output (yj(θ)). 

• yj(θ) is the predicted output, calculated using the weighted sum equations and the 

current model parameters. 

Step III: Feature Extraction 

MLP has been trained using the best hyperparameters found by Grid Search CV on the 

combined training and validation data. 

y = ∑ 
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𝑖=1 

𝑗=1 

For each data point in dataset (including the test set), the features are passed through the 

trained MLP and the activations of the last hidden layer has been extracted. These activations 

will be the new features for the SVM. 

Step IV: SVM training and prediction 

SVM model definition: SVM model is used for classification. A kernel RBF is used. Grid 

Search CV is used for SVM Hyperparameter Tuning. 

The RBF Kernel function used is given in the Eq-6 as follows: 

K(xi,xj)=exp(−γ∣∣xi−xj∣∣2) 

Where: 

• K(xi, xj) is the kernel function, which measures the similarity between data points xi 

and xj in a higher-dimensional space. 

• Γ is the kernel coefficient (a hyperparameter), which controls the influence of a single 

training example. 

• ∣∣xi−xj∣∣2 is the squared Euclidean distance between data points xi and xj. 

The decision function is given in the Eq-7 below. 

f(x)=∑𝑁  𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏 
Where: 

• f(x) is the decision function, which predicts the class of a new data point x. 

• αi is the Lagrange multipliers (learned from training), which determine the influence of 

each support vector. 

• yi is the class label of the training data point xi. 

• K(xi,x) is the RBF kernel function between the training data point xi and the new data 

point x. 

• B is the bias term. 

• N is the number of support vectors. 

Step V: Final Model Training 

The SVM is finally trained using the best hyperparameters found by Grid Search CV on the combined 

training and validation data using the features extracted from the MLP. 

Eq-8 shows that the MLP is used to transform the original input data (xi) into a new feature space (zi). 

The best MLP parameters found during gridsearchCV are used. 

zi=MLP(xi, θbest) 

Where:  

▪ zi is the feature vector extracted by the MLP for input data point xi. 

▪ MLP(xi,θbest) is the MLP function applied to input xi, using the best parameters (θbest) 

found during MLP training. 

 

Eq-9 is the standard SVM decision function, but it now operates on the features (z) extracted by the 

MLP, rather than the original input data. 

f(z)=∑𝑁 𝛼𝑗𝑦𝑗𝐾(𝑧𝑗, 𝑧) + 𝑏 

Where: 

▪ f(z) is the SVM decision function, predicting the class of a data point represented by the 

feature vector z. 

▪ αj is the Lagrange multipliers (learned from training). 

▪ yj is the class label of the training data point zj. 

▪ K(zj,z) is the RBF kernel function between the training feature vector zj and the new feature 

vector z. 

▪ b is the bias term. 

▪ N is the number of support vectors. 

▪ Z is the features extracted from the MLP. 
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Step VI: Prediction on the TestSet 

The MLP features are extracted for the test data and the trained SVM is used to predict the side effects 

of the held-out test set. The prediction can be expressed as in Eq-10 given below- 

ytest=SVM (MLP(xtest, θbest),αbest,bbest,γbest) 

Where 

• ytest is the predicted side effects for the test data. 

• SVM represents the trained SVM model, using the best parameters found during training. 

• MLP(xtest,θbest) is the MLP model applied to the test data (xtest), using the best MLP parameters 

(θbest). This extracts the features from the test data. 

• αbest is the best Lagrange multipliers learned by the trained SVM. 

• bbest is the best bias term learned by the trained SVM. 

• γbest is the best RBF kernel coefficient learned by the trained SVM. 

Proposed hybrid approach-2 (Applied on Dataset-2 and Dataset-5) 

This approach is combining the features of random forest and gradient boosting. 

 

Random Forest 

Random Forest is an ensemble learning method that constructs multiple decision trees during training 

and outputs the class that is the mode of the classes (classification) or mean prediction (regression) of 

the individual trees. It is robust to overfitting and handles high-dimensional data well. It is efficient for 

handling both categorical and numerical data. 

Gradient Boosting 

Gradient Boosting is another ensemble learning method that builds trees sequentially, with each tree 

correcting the errors of the previous ones. It optimizes a loss function using gradient descent. Gradient 

boosting often provides high accuracy, especially when tuned appropriately. 

Hybrid Model (Random Forest (RF) + Gradient Boosting (GB)) 

This hybrid model combines the predictive power of RF and GB. Firstly, both the RF and GB models 

are trained. Then the probability prediction of both models is used as a new set of input features for a 

final logistic regression classifier. The logistic regression is then employed to get the best combination of 

the two models' predictions, thus increasing accuracy. The final prediction is the probability generated 

by the logistic regression model. 

The flow of the proposed methodology has been depicted in the Fig 3. 

Fig 3: The Proposed RNN+ Gradient Boost algorithm to predict liver damage. 

https://www.theaspd.com/ijes.php


International Journal of Environmental Sciences 

ISSN: 2229-7359 

Vol. 11 No. 6s, 2025 

https://www.theaspd.com/ijes.php 

852 

 

 

Proposed hybrid approach-3 (Applied on dataset-3) 

Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) 

Given the sequential nature of 'Usage_Duration' and its potential impact on hormonal changes over 

time, we employ Long Short-Term Memory (LSTM) networks. LSTMs are a type of RNN capable of 

capturing long-range dependencies in time-series data. This is crucial for understanding how prolonged 

AAS usage influences hormonal fluctuations. 

The 'Usage_Duration' is treated as a time series, with each time step representing a unit of usage (e.g., 

weeks, months). The 'Drug_Name', 'Dosage', and 'Administration_Method' are incorporated as 

contextual features. The model is trained to predict 'Testosterone_Level' and 'Estrogen_Level' at each 

time step. The LSTM network has been used to learn patterns between the duration of the AAS usage 

and the change in hormone levels. 

This allows us to model the dynamic changes in hormone levels as a function of AAS usage duration. It 

can identify critical periods of usage associated with significant hormonal shifts. 

LSTM networks can show the temporal relationship between the usage of AAS and the levels of 

testosterone and estrogen. 

 

RESULTS 

Experimental Results For Dataset- I And Proposed Approach-1 

The efficiency of the proposed hybrid approach (GridSearchCV + SVM + MLP) was evaluated. A 

sequence of experiments were conducted. Its performance was assessed against baseline models: a 

standard SVM (with manually chosen hyperparameters), a Decision Tree, and Gradient Boosting. The 

results are presented below in Fig.3. 

The Performance evaluation is depicted in the Fig.3 

 
Fig 3: Performance of the applied algorithms for Dataset -I 

A hybrid MLP-SVM model predicted negative side effects. An MLP with two hidden layers (64 neurons, 

ReLU activation) was defined and optimized using GridSearchCV. MLP activations were extracted as 

new features for all data. An SVM with an RBF kernel was then optimized via GridSearchCV and 

trained on these features. Test set predictions were done using MLP-derived features, and performance 

was evaluated. The standard SVM, with manually chosen hyperparameters, performed worse, 

highlighting the importance of proper hyperparameter optimization. The Decision Tree model 

exhibited lower performance compared to both the SVM-based approaches. This suggests that the 

relationships between AAS usage and side effects might be complex and non-linear, which the Decision 

Tree struggled to capture efficiently. The hybrid SVM, with its RBF kernel, was better suited to model 

these complexities. While Gradient Boosting also performed well, our hybrid SVM approach achieved 
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similar, and in some cases slightly better, results. This suggests that for our specific dataset, the 

optimized SVM provided a strong alternative to the more computationally intensive Gradient Boosting 

method. It's important to note that with further tuning of Gradient Boosting parameters (e.g., number 

of estimators, learning rate), its performance might improve. However, the hybrid SVM -MLP approach 

offered a good balance between performance and computational cost. Compared to Gradient 

Boosting: Gradient Boosting is a powerful technique, but it can also be computationally expensive, 

especially if the number of trees or other hyperparameters needs to be tuned. While Gradient Boosting 

often achieves high accuracy, the hybrid SVM-MLP approach can be a good alternative, especially if 

computational resources are limited, and it may sometimes outperform Gradient Boosting, especially if 

the data is well-suited to an SVM's strengths. It is also important to consider that with proper tuning, 

Gradient Boosting can also be very powerful, and in many cases, it can outperform SVMs. 

4.2 The morbidity prediction on Dataset-II for hormonal imbalance using proposed hybrid 

approach-2. 

The following algorithms were applied to the Dataset II mentioned in the dataset section. The methods predict 

the occurrence of Hormonal imbalance in terms of Testosterone and Estrogen levels. This study 

identifies the impact of anabolic-androgenic steroid (AAS) usage on hormonal imbalances, specifically 

focusing on testosterone and estrogen levels, using a dataset containing 'Unique_ID', 'Drug_Name', 

'Usage_Duration', 'Dosage', 'Administration_Method', 'Testosterone_Level', and 'Estrogen_Level'. To 

effectively analyze this complex relationship, we employ a combination of neural network and statistical 

techniques. 

Partial Least Squares Regression (PLSR) 

To obtain the complex, potentially linear, relationships and underlying latent variables influencing 

hormonal outcomes from AAS usage, we employ Partial Least Squares Regression (PLSR). PLSR is 

particularly suitable when dealing with potentially highly correlated input features, such as 

'Drug_Name', 'Dosage', and 'Administration_Method', and their combined impact on 

'Testosterone_Level' and 'Estrogen_Level'. Unlike traditional linear regression, PLSR aims to identify a 

set of latent variables that best explain the covariance between the predictor variables (AAS usage 

parameters) and the response variables (hormone levels). This approach allows us to identify the 

underlying patterns and relationships that drive hormonal changes. The PLSR model is trained to 

predict 'Testosterone_Level' and 'Estrogen_Level' by identifying these latent variables and their linear 

combinations, effectively capturing the synergistic or antagonistic effects of different AAS parameters. 

While PLSR is fundamentally a linear technique, its ability to handle multicollinearity and identify 

latent structures can reveal relationships that might be obscured by simple linear models, especially in 

datasets with complex interdependencies among predictor variables 

 

Multilayer Perceptron (MLP) with Feature Interaction 

To capture the complex interactions between AAS dosage, administration method, and drug type on 

hormonal outcomes, we employ a Multilayer Perceptron (MLP) with feature interaction modeling. 

Polynomial feature expansion is used to generate interaction terms between 'Drug_Name', 'Dosage', and 

'Administration_Method'. The MLP is trained to predict 'Testosterone_Level' and 'Estrogen_Level' 

using the expanded feature set. The MLP will be able to find the non-linear realationship between the 

AAS information and the hormone levels. This allows for the identification of synergistic or 

antagonistic effects of different AAS parameters on hormone levels. It can reveal non-linear 

relationships that may not be apparent from linear models. The performance of the applied algorithms 

for hormone level prediction is given in Fig.4. 
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Fig 4: Performance of the applied algorithms for hormone level prediction 

 

The proposed hybrid algorithm, employing Recurrent Neural Networks (RNNs) with Long Short-Term 

Memory (LSTM), demonstrated superior performance in predicting continuous hormone levels 

(Estrogen and testosterone) compared to the standalone Multilayer Perceptron (MLP) and Partial Least 

Squares Regression (PLSR) models. The LSTM's ability to model temporal dependencies within the 

usage duration data proved particularly advantageous, as it captured the dynamic changes in hormone 

levels over time. This sequential analysis allowed the model to identify critical usage patterns and time- 

dependent effects that significantly influenced hormone level predictions. Specifically, the LSTM 

achieved a higher R-squared value, indicating a better fit to the data, and lower MSE and MAPE values, 

signifying smaller prediction errors, compared to the MLP and PLSR models. This suggests that the 

LSTM's ability to capture the temporal dynamics of AAS usage and its impact on hormonal changes 

resulted in more precise and reliable predictions. The MLP, while effective at capturing non-linear 

relationships, lacked the temporal awareness of the LSTM. Similarly, the PLSR, being a linear model, 

failed to capture the complex, non-linear interactions between AAS parameters and hormonal changes. 

The hybrid LSTM model, by leveraging its sequential processing capabilities, achieved better 

performance, indicating its enhanced ability to accurately predict hormone levels based on AAS usage 

patterns.The comparative analysis of three distinct algorithms—Recurrent Neural Networks with Long 

Short-Term Memory (RNN+LSTM), Multilayer Perceptron (MLP) with feature interaction, and Partial 

Least Squares Regression (PLSR) reveals significant variations in their ability to predict hormonal 

imbalances resulting from AAS usage. Notably, the RNN+LSTM model demonstrated the highest 

predictive accuracy, achieving an R2 of 0.91, indicating a strong correlation between predicted and 

actual hormone levels. This model's superior performance can be attributed to its capacity to capture 

the temporal dependencies inherent in usage duration, effectively modeling the dynamic changes in 

testosterone and Estrogen levels. The low Mean Squared Error (MSE) of 0.12 and Mean Absolute 

Percentage Error (MAPE) of 5.80% underscore the model's precision and reliability in predicting 

hormonal outcomes over time.While the MLP with feature interaction also delivered commendable 

results, with an R2 of 0.88, MSE of 0.15, and MAPE of 7.20%, it was slightly outperformed by the 

RNN+LSTM. The MLP's ability to model non-linear interactions between AAS parameters contributed 

to its robust performance, highlighting the importance of capturing complex relationships. In contrast, 

the PLSR model, despite its capability to handle multicollinearity and identify latent variables, exhibited 

the lowest predictive accuracy, with an R2 of 0.75, MSE of 0.28, and MAPE of 12.5%. This suggests that 

while PLSR can identify underlying patterns, its linear nature may not adequately capture the complex, 

non-linear dynamics of hormonal responses to AAS usage. The results underscore the significance of 

employing advanced, non-linear, and time-series-aware models like RNN+LSTM and MLP for accurately 

predicting hormonal imbalances in AAS users. 
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4.3. The morbidity prediction on Dataset- III to predict chances of liver damage using proposed 

hybrid approach-3. 

 

The following algorithms are applied to identify the ALT and AST levels and liver damage. To precisely 

model the intricate relationships between Steroid_Type, Candidate_Age, Pulse_Level, ALT, AST, and 

the risk of liver damage, we utilize a Random Forest, Gradient Boost, and Proposed Hybrid Random 

Forest and Gradient Boosting approach. The Hybrid approach captures complex interactions between 

these variables, enhancing the prediction accuracy of liver damage likelihood based on ALT and AST 

levels. The Performance parameters for the prediction of liver damage due to the consumption of AAS 

is tabulated in Table 3. 

Sr. No Algorithm F1 Score Accuracy Precision Recall 

1 RNN 0.78 0.71 0.73 0.98 

2 Gradient Boost 0.86 0.81 0.78 1.0 

3 RNN+Gradient 

Boost 

0.81 0.89 0.84 0.99 

Table 3: Performance of the applied algorithms for predicting Liver Damage from AST and ALT levels. 

 

Fig 6 Depicts the performance of different algorithms in predicting Liver Damage due to an imbalance 

in AST and ALT levels due to AAS consumption. 
 

Fig 6: Performance of different algorithms in predicting liver damage due to imbalance in AST and 

ALT levels due to AAS consumption. 

 

Table 3 presents the performance metrics for predicting liver damage from AST and ALT levels using 

three algorithms: RNN, Gradient Boost, and a hybrid RNN + Gradient Boost. Gradient Boost 

demonstrated the highest F1-score (0.86) and accuracy (0.81), with a perfect recall of 1.0, indicating its 

ability to capture all positive instances of liver damage, though its precision was lower at 0.78. The 

hybrid RNN + Gradient Boost achieved the highest accuracy of 0.89, with a precision of 0.84 and a 

recall of 0.99, showing a strong balance between correctly identifying liver damage and minimizing false 

positives. The RNN model, while achieving a high recall of 0.98, exhibited the lowest F1-score (0.78) 

and accuracy (0.71), reflecting a trade-off between capturing positive cases and overall predictive 

performance. These results highlight the varying strengths and weaknesses of each algorithm in 

predicting liver damage, with Gradient Boost and the hybrid approach showing the most promising 

performanceThe results presented in Table 3 reveal distinct performance characteristics among the 

RNN, Gradient Boost, and hybrid RNN+Gradient Boost algorithms for predicting liver damage based 
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on AST and ALT levels. Gradient Boost, with its superior F1-score and perfect recall, excels at capturing 

all instances of liver damage, albeit with a slightly lower precision, suggesting a tendency towards more 

false positives. Conversely, the hybrid model achieves the highest accuracy, demonstrating a balanced 

performance in correctly identifying liver damage while minimizing false positives, highlighting the 

synergistic benefits of combining RNN and Gradient Boost. The RNN model, while possessing high 

recall, suffers from lower precision and overall accuracy, indicating a trade-off between sensitivity and 

specificity. These findings underscore the importance of selecting an algorithm that aligns with the 

specific clinical priorities, with Gradient Boost prioritizing sensitivity and the hybrid model emphasizing 

balanced performance. 

4.4. Dataset IV results for predicting damage to water bodies due to steroids 

To analyse the influence of steroids on water bodies, we have taken three most important target 

variables namely steroid concentration (ng/L) which measures the levels of steroids present in water 

samples. This provides the measurement of contamination, then endocrine disruption index (EDI) is 

taken as the second variable which reveals the biological effects of these contaminants on aquatic 

organisms. Finally, the third variable taken for study is vitellogenin levels which is known as the 

sensitive biomarker for endocrine disruption. These variables help to identify the presence of steroids 

and their impact on aquatic environments. The Table 4. Is showing the results of forecasting accuracy 

of presence of steroids in the aquatic environment. 

Table 4. Presenting results for prediction accuracy of presence of steroids in water bodies 

Method Accura 

cy (%) 

R² RMSE MAE MAPE Adjuste 

d R² 

Trainin 

g Time 

(s) 

Inference Time 

(ms per sample) 

RF 84.2 0.82 8.10 6.62 10.6 0.80 15.5 1.4 

SVM 82.6 0.80 8.40 6.98 12.8 0.78 16.8 2.4 

Proposed 

hybrid 

approach-2 

 

89.8 

 

0.88 

 

7.12 

 

5.48 

 

8.8 

 

0.82 

 

10.6 

 

1.6 

Table 4 shows the parameters and their respective values for predicting target variables as stated above 

to determine the presence of steroids in the aquatic life. The values depict that the proposed approach 

is able to identify the presence of steroids with the greater accuracy and high prediction scores with 

respect to statistical parameters as shown above in Table 4. 

4.5. Dataset V resultsTo measure the influence of steroids on soil bodies in the environment, there are 

important target variables considered in the study such as steroid concentration in soil (ng/kg) which 

provides the direct evidence in the form biosolids or manure for showing the presence of steroids in 

soil. Second is the soil microbial diversity index (SMDI) which quantifies the changes in microbial 

community structure. Third is plant uptake concentration (ng/kg in tissue) that determines the 

measurement of steroids absorbed by the plants. All these pose potential risks to human health. Table 

5 is presenting results with statistical evaluation parameters. 

Table 5. Presenting results for prediction accuracy of presence of steroids in soil 

Method Accura 

cy (%) 

R² RMSE MAE MAPE Adjuste 

d R² 

Trainin 

g Time 

(s) 

Inference Time 

(ms per sample) 

XGBoost 83.6 0.79 12.8 9.3 12.6 0.75 16.2 1.8 

SVM 78.3 0.73 16.2 10.8 14.2 0.70 9.1 2.6 

Proposed 

hybrid 

approach-3 

87.8 0.82 10.8 9.8 9.8 0.80 10.2 1.2 
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Table 5 shows the parameters and their respective values for predicting target variables as stated above 

to determine the presence of steroids in the soil bodies. The values depict that the proposed approach is 

able to identify the presence of steroids in plants and soil with the greater accuracy and high prediction 

scores with respect to statistical parameters as shown above in Table 5. 

 

CONCLUSION 

This research effectively demonstrates the application of machine learning techniques to predict the 

occurrence of severe side effects, specifically CVDs, pulmonary diseases, hormonal imbalances, and liver 

damage, resulting from the consumption of anabolic-androgenic steroids (AAS). By focusing on 

commonly used AAS drugs like Anadrol, Oxandrolone, Clenbuterol, Deca Durabolin, and Dianabol, 

the study addresses a critical need for predictive tools to mitigate AAS-related health risks. The study 

also determines the impact of steroids on water and soil bodies. Three hybrid algorithms are proposed 

for five datasets. A novel hybrid algorithm, combining Grid Search Cross-Validation with SVM and 

MLP was developed and optimized, which is achieving a maximum accuracy of 91% for predicting 

hormonal imbalances (Dataset II) and 88% for predicting CVD and Pulmonary diseases from Dataset-I. 

This hybrid approach outperformed baseline models and, in some instances, even Gradient Boosting is 

highlighting the efficacy of optimized hyperparameter tuning and the synergistic benefits of combining 

neural network and statistical techniques. For predicting liver damage and (Dataset III), the study found 

that a hybrid RNN+Gradient Boosting model demonstrated superior performance. The hybrid 

approaches ae also applied on water body and soil based datasets and the results reveal that the hybrid 

methods can predict the presence of steroids in water and soil bodies with great accuracy. The analysis 

of water bodies reveal with presence of steroid using RNN+LSTM and MLP models is capable of 

capturing non-linear and temporal dependencies, and this research is emphasizing the need for 

advanced models in complex biological systems to analyse the impact of steroids on humans and 

soil/water bodies. Future research should focus on expanding the range of steroids and their 

corresponding impacts on human bodies and nature. 
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