
International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 9s, 2025  
https://www.theaspd.com/ijes.php  
 

1121 

Comparative Analysis Of Various Opencv Methods For Automatic Species 
Detection Using Camera Trap Images 
 
Mohammed Shameer M C1*, Mubeena V2 

 
1*Assistant Professor, Dept. of Computer Science, Farook College (Autonomous), Kozhikode  
2Assistant Professor, Dept. of Vocational Studies, Farook College (Autonomous), Kozhikode 
 
 
Abstract: 
Biodiversity monitoring and conservation is essential for protecting ecosystem and to ensure the ecological resilience to 
disturbances including climatic change, disease outbreaks, and human exploitation. Camera traps is a vital tool for wildlife 
species monitoring that generate vast collections of images which require automated processing.  Numerous approaches are 
available in literature. Though deep learning techniques provide higher accuracy in automated species detection, many 
conservation projects still employs traditional image processing techniques using OpenCV due to its lightweight nature and 
inherent limitation to computational resources. This paper presents the first comprehensive, head-to-head evaluation of six 
OpenCV based species detection techniques including three classical methods (Background Subtraction - Contour Analysis, 
Haar-Cascade, HOG + SVM)  and three deep learning based methods (MobileNet-SSD, YOLOv5-ONNX, 
EfficientDet-D0) across three publicly available camera trap datasets (Snapshot Serengeti, Caltech Camera Traps and 
CamTrapAsia). Results show that YOLOv5-ONNX achieves the highest mean Average Precision (mAP = 93.4%). The 
classical Background Contour method still remains effective for large species (elephants) (F1 = 0.79) while running  faster 
on Raspberry Pi 4 hardware. This study highlights a trade-offs in accuracy, inference speed, energy footprint, and data 
requirements, providing actionable guidelines for biologists in selecting OpenCV pipelines under real - world conditions. 
 
Keywords: Camera traps; Species detection; OpenCV; YOLOv5; Haar cascade; Wildlife monitoring; Performance 
benchmarking. 
 
1. Introduction 
Biodiversity conservation is very important to ensure the stability and sustainability of the earth’s ecological 
balance. Each species plays an important role in the ecosystem. As ecosystems face exceptional stress due to 
human interventions like deforestation, urbanization, loss of habitat and climate change, it is essential to track 
how species or specific animal populations respond and adapt to these changes [1]. Such monitoring helps 
early detection of species population decline, guides habitat protection and conservation efforts, and reforms 
environmental policies. Thus biodiversity monitoring is essential for protecting ecosystem and to ensure the 
ecological resilience [2].  
Animal resource investigation is an important technique used in biodiversity conservation that provides insight 
into the species presence, their movement and behavior. Camera trapping is the most widely used technique in 
evidence based conservation [3][4].  This technique can be used to identify biodiversity hotspots and endanger 
species that require immediate actions. Camera traps generates huge volume of data and require much effort to 
sort, analyze and annotate the data [5]. 
Many automated image processing techniques are available for handling the camera trap images such as deep 
neural networks (DNNs). DNNs yields 90% accuracy   for large and balanced data sets.  As many of the field 
deployments are operated utilizing battery-operated edge devices where computational resources, connectivity, 
and annotated training data are deficient [6]. OpenCV provide extensive methods of traditional and deep 
neural network (DNN) modules that are capable of being executed on economically viable hardware; however, 
there exists a dearth of empirical evidence regarding which OpenCV methodology most effectively reconciles 
performance with resource utilization in the context of automatic species detection. 
This study compare and analyze the performance of three classical (Background Subtraction- Contour Analysis, 
Haar-Cascade, HOG- SVM) and three deep learning (MobileNet-SSD, YOLOv5-ONNX, EfficientDet-D0) 
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image processing techniques across three public camera trap datasets (Snapshot Serengeti , Caltech Camera 
Traps and CamTrapAsia).  Major contributions of this study include: 
1. Designing a reproducible evaluation protocol for comparing six OpenCV techniques on three camera trap 
datasets.  
2. Produce a comprehensive metrics (mAP, precision, recall, F1) and analyze per species and day night 
variation.  
3. Provide practical recommendations and decision matrices to help practitioners match OpenCV pipelines to 
deployment scenarios. 
Remaining sections of this paper is organized as follows. Section 2 discuses the species detection methods 
available in literature. Section 3 describes the details of the data set used for this study. Section 4 highlights the 
methodology and section 5 discuses the experimental set up. A detailed analysis and discussion of the result is 
given in section 6 and section 7 concludes the study.    
 
2. Literature Review 
There are mainly two broad categories of approaches for automated species detection from camera trap images 
- Classical computer vision methods and deep learning based techniques. Both of these techniques aim to 
enhance biodiversity monitoring by automating the identification and classification of species using large 
volume of captured images, thus addressing the challenges posed by large datasets. 
 
2.1 Traditional Methods 
Early wildlife - monitoring systems relied on background subtraction for detecting moving objects in video 
sequences. Here frames are compared with static background model to identify changes that indicate 
movements [7][8]. To cope with the environmental variations and light conditions, the model should be 
enhanced with additional color and gradients features [9][10]. The Histogram of Oriented Gradients (HOG) 
along with Support Vector Machine (SVM) is another approach used for object detection. HOG is capable of 
capturing edge and gradient details and SVM classifies these features to identify the species [11][12]. This 
method is sensitive to background and light conditions and has achieved moderate success. Haar cascade 
classifier method is used for rapid object detection in real-time applications. This approach utilizes a series of 
simple features to identify each object. They are suitable for wildlife detection in dynamic environments [13]. 
 
2.2 Deep Learning based Approaches 
Recent studies demonstrate the use of deep learning models to localize and classify species. Such methods and 
methods using convolutional neural networks (CNNs) achieve higher performance in species recognition [6]. 
YOLOv5m has achieved a promising accuracy of 97 to 99 % on night-time datasets [14]. YOLOv10-X enables 
counting of individual images [15][16]. Fine tuning and fusing temporal metadata can further enhance 
accuracy [15]. The DNN module of The OpenCV package supports inference for ONNX and TensorFlow 
models, thus enabling edge deployment of compact CNNs such as MobileNet-SSD. 
Comprehensive Models that make use of CameraTrapDetectoR package offers models that can classify various 
species, achieving a mean average precision values between 0.80 and 0.96. This facilitates more user-friendly 
applications for conservators and biologists [17][18]. 
 
Combining deep learning techniques with contextual data such as habitat information, vegetation type and 
time of day, provide enhanced ecological insights. Such advanced systems supporting more accurate wildlife 
management decisions [16][19]. 
 
Use of automated methods significantly reduce the need of manual effort and intervention required for species 
identification, still there exist concern regarding which method is more suitable for a specific ecosystem. 
Balanced automations with expert insights will be crucial for effective conservation strategies and decisions 
[20]. This decision requires ecological understanding. Further, only few studies attempted compare and analyze 
the classical and deep learning techniques under uniform conditions. This study work addresses this gap with a 
holistic, resource aware benchmark. 
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3. Datasets 
This study leverages on the three widely used and open source datasets - Snapshot Serengeti (SS) [21], Caltech 
Camera Traps (CCT-20) [22] and CamTrapAsia [23]. While SS utilizes public participation to classify images, 
CCT 20 makes use of advanced algorithms for species identification and analysis from camera trap data with a 
different methodological approach. CamtrapAsia focuses on biodiversity monitoring in Asian ecosystems using 
camera trap technology to gather data on wildlife utilizing local participation. All datasets include bounding 
box annotations. Features of the three dataset are tabulated as in Table 1. 
 

Dataset Geography Images Species Day/Night(%) Annotation 
Format 

Snapshot Serengeti 
(SS) 

Tanzania 7.1 million 61 62/38 JSON 

Caltech Camera Traps 
(CCT-20) 

USA 243,100 20 75 / 25 JSON 

CamTrapAsia Tropical Asia, including 
Indonesia, Malaysia 

278,260 371 55 / 45 JSON/XML 

Table 1: Details of the dataset used 
 
4. Methodology 
4.1 Traditional Methods 
(a) The Background Contour (BG‑CT) methodology is based on Mixture of Gaussians (MOG2) algorithm for 
background subtraction that can isolate forward moving objects in a static environment. This method is very 
efficient for images captured in daylight where background is relatively stable. Morphological opening is 
performed to remove minor artifacts and noises through erosion and dilation. The resultant binary mask is 
then processed to extract the contours of the objects. Each contour is later analyzed according to area and 
aspect ratio to exclude non-animal objects. (b) The Haar Cascade classifier is a feature-based detection 
approach that utilizes trained cascade classifiers to identify objects. Here the system is trained with 6,000 
positive and 9,000 negative samples with images resized to dimensions of 144 × 144 pixels. For feature 
extraction, Local Binary Patterns (LBP) algorithm is used. (c)  The HOG + SVM approach utilizes Histogram of 
Oriented Gradients (HOG) descriptor that effectively captures local edge orientation and intensity within a 
detection window of 64 × 128 pixels. The captured image is partitioned into cells of 8×8 pixel dimension, and 
9 bin histogram is calculated for each cell. Block normalization is performed to augment light variance. The 
resulting descriptor is used for training the linear Support Vector Machine (SVM) classifier. The model 
underwent iterative refinement through three rounds of hard negative mining.  
 
4.2 Deep Learning based Approaches 
(a) The MobileNet SSD model is a lightweight, real-time object detector trained in TensorFlow Lite using int8 
quantization for efficient inference on edge devices. Here, it is converted to OpenCV’s DNN module to enable 
direct deployment across platforms. The model features a streamlined architecture that balances detection 
accuracy and speed, making it suitable for embedded applications. (b) The YOLOv5 ONNX utilizes the small 
variant of Ultralytics’ YOLOv5 model, pre-trained on the dataset and subsequently fine-tuned for 50 epochs on 
each of the three datasets (SS, CCT-20, and CamTrapAsia). Once exported to ONNX format, this model 
enables hardware-agnostic acceleration through OpenCV’s backend. (c) The EfficientDet D0 (E-D0) model is a 
reimplementation of EfficientDet Lite0 with an input resolution of 512 × 512 pixels. This model designed for 
mobile and edge scenarios.  It uses compound scaling and efficient BiFPN feature fusion, offering strong 
performance at low computational cost.  
All three models were integrated and evaluated uniformly within OpenCV’s inference framework to ensure 
fair comparisons. 
 
4.3 Training 
The deep learning models used in this study is trained using the Stochastic Gradient Descent (SGD) 
optimization algorithm with a learning rate (lr = 0.001) and a momentum value of 0.9. These values are chosen 
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to provide a stable convergence during the training process. A consistent batch size of 32 is used in the 
experiments to balance between memory usage and better gradient stability. Training and fine-tuning were 
performed on an NVIDIA RTX A6000 GPU system. The classical computer vision approaches discussed in 
this paper does not require any GPU acceleration and were executed entirely on the CPU due to their 
lightweight nature. To achieve optimal performance from each model, a 5-fold random search strategy is 
carried out for hyper-parameter tuning. This involve randomly sampling hyper-parameter combinations within 
defined ranges over five validation folds, allowing for healthy generalization and minimization of over-fitting 
across the datasets. The hyper-parameter search grid is given in Table 2. 
 

Model Dataset Learning Rate Batch Size Momentum 
Window Size / 
Anchor Scale 

Best Value 
Achieved 

BG - CT  SS N/A N/A N/A Area > 1000 px F1 = 0.74  
CCT-20 N/A N/A N/A Area > 500 px F1 = 0.69 
CamTrapAsia N/A N/A N/A Area > 1000 px F1 = 0.79 

Haar - 
Cascade 

 SS 
NA NA NA 

144×144 patch, 
neighbors=4 

F1 = 0.67 

CCT-20 
NA NA NA 

144×144 patch, 
neighbors=4 

F1 = 0.64  

CamTrapAsia 
NA NA NA 

144×144 patch, 
neighbors=4 

 
F1 = 0.65 

HOG + 
SVM 

 SS NA NA NA 64×128, stride=8 F1 = 0.61  
CCT-20 NA NA NA 64×128, stride=8 F1 = 0.59  
CamTrapAsia NA NA NA 64×128, stride=8 F1 = 0.63 

MobileNet - 
SSD 

 SS 0.001–0.01 32 0.9 0.35 - 0.75 mAP = 85.2% 
CCT-20 0.001–0.01 32 0.9 0.35 - 0.75 mAP = 86.5% 
CamTrapAsia 0.001–0.01 32 0.9 0.35 - 0.75 mAP = 85.6% 

YOLOv5 - 
ONNX 

 SS 0.0005 -0.005 32 0.9 Anchor = auto mAP = 93.4%  
CCT-20 0.0005 - 0.005 32 0.9 Anchor = auto mAP = 91.2%  
CamTrapAsia 0.0005–0.005 16–64 0.9 Anchor = auto mAP = 94.6% 

EfficientDet 
- D0 

 SS 0.0005 - 0.005 16 0.9 Input : 384 - 512px mAP = 92.3%  
CCT-20 0.0005 -0.005 16 0.9 Input : 384 - 512px mAP = 89.9%  
CamTrapAsia 0.0005–0.005 16–64 0.9 Input : 384 - 512px mAP = 90.7% 

Table 2: Hyper-parameter search grid 
 
5. Experimental Setup 
To evaluate the performance of species detection model, following setup is carried out. The training is carried 
out in high-performance workstation with an Intel Core i7-13900K processor, 64 GB of RAM, and an 
NVIDIA RTX A6000 GPU. This configuration ensures fast model training and efficient handling of large 
datasets with high-resolution input images. For carrying out edge inference test, the Raspberry Pi 4 with 4 GB 
of RAM and the NVIDIA Jetson Nano devices are used. These devices are resource constrained, low-power 
platforms suited for real-world, low-resource environments.  
The metrics used to evaluate the Model performance include mean Average Precision at a threshold of 0.5 
(mAP = 0.5), precision, recall, and F1-score.  This metrics represents a balanced view of detection accuracy and 
robustness of the system.  
70% percent of the images in the dataset is used for training purpose and 15% for validation and remaining 
for testing (15%).  Each experiment was repeated three times per model, and the final results are reported as 
the mean values ensuring statistical reliability of the findings. 
6. Results and Discussions 
The result of the experiment carried out shows deep learning models outperforms the classical model in 
accuracy and precision. The species specific F1 and Recall values are tabulated for each dataset is given in Table 
3, Table 4 and Table 5. 
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Species BG-CT Haar Cascade HOG + SVM MobileNet - 
SSD 

YOLOv5 - 
ONNX 

EfficientDet - 
D0 

F1 Recall F1 Recall F1 Recall F1 Recall F1 Recall F1 Recall 
Zebra 0.72 0.65 0.67 0.62 0.61 0.58 0.85 0.84 0.96 0.94 0.94 0.90 
Wildebeest 0.74 0.65 0.65 0.61 0.60 0.56 0.86 0.85 0.95 0.92 0.93 0.90 
Elephant 0.69 0.64 0.63 0.59 0.59 0.54 0.82 0.81 0.93 0.91 0.91 0.89 

Table 3: Per-Species F1 and Recall Scores for Snapshot Serengeti Dataset 
 

Species BG-CT Haar Cascade HOG + SVM MobileNet - 
SSD 

YOLOv5 - 
ONNX 

EfficientDet - 
D0 

F1 Recall F1 Recall F1 Recall F1 Recall F1 Recall F1 Recall 
Mule Deer 0.69 0.64 0.64 0.61 0.59 0.56 0.83 0.80 0.91 0.91 0.89 0.87 
Coyote 0.65 0.61 0.61 0.56 0.57 0.54 0.81 0.80 0.90 0.88 0.88 0.86 
Bobcat 0.62 0.58 0.64 0.59 0.55 0.51 0.79 0.78 0.89 0.88 0.87 0.86 

Table 4: Per-Species F1 and Recall Scores for Caltech Camera Traps Dataset 
 

Species BG-CT Haar Cascade HOG + SVM MobileNet - 
SSD 

YOLOv5 - 
ONNX 

EfficientDet - 
D0 

F1 Recall F1 Recall F1 Recall F1 Recall F1 Recall F1 Recall 
Elephant 0.79 0.73 0.65 0.60 0.63 0.57 0.86 0.82 0.96 0.95 0.95 0.92 
Leopard 0.66 0.69 0.61 0.56 0.56 0.56 0.88 0.84 0.95 0.92 0.94 0.90 
Civet 0.34 0.29 0.42 0.36 0.39 0.36 0.78 0.75 0.92 0.89 0.88 0.85 

Table 5: Per-Species F1 and Recall Scores for CamTrapAsia Dataset 
 
The deep learning model YOLOv5 ONNX outperforms all other models across the three dataset. YOLOv5 
achieves the highest mean Average Precision of 93.4% on SS dataset, 91.2% on CCT-20 dataset and 94.6% on 
the CamTrapAsia dataset respectively a with threshold value of 0.5. These results highlight robustness and 
adaptability of YOLOv5 deep learning model after fine-tuning for 50 epochs on each dataset. YOLOv5 showed 
higher performance in day-night parity as well, aligning with earlier findings. The day-night performance of the 
YOLOv5 is tabulated as in Table 6. 
 

Dataset Day/Night Precision Recall mAP 

SS 
Day 0.936 0.924 0.931 
Night 0.906 0.893 0.902 

CCT-20 
Day 0.928 0.917 0.918 
Night 0.902 0.884 0.908 

CamTrapAsia 
Day 0.945 0.935 0.946 
Night 0.926 0.912 0.937 

Table 6: Day - Night Accuracy for YOLOv5-ONNX on all datasets 
 
EfficientDet - D0 model is another reliable species detection model with mean Average Precision of 92.3%, 
89.9% and 90.7% on SS, CCT-20 and CamTrapAsia datasets respectively. 
Traditional approaches BG-CT based on background subtraction marked the lowest performance in terms of 
mAP among all models. But this model achieved a F1 Score of 0.79 (elephant) shows its effectiveness in 
detecting large species.  Though BG CT model struggle in detecting smaller and overlapping species, it can be 
effectively utilized for detecting lager species with minimal cost. Another notable finding from the study is that, 
deep learning model MobileNet-SSD showed its weakness in identifying smaller species but excelled for 
medium and larger species identification.  
 
7. Conclusion 
This empirical study is an attempt to evaluate the performance and behavior of OpenCV methods for 
automatic species detection using camera trap images. OpenCV package provide two categories of automated 
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species detection – using classical and deep learning based approaches. Study underlines the performance 
advantages of deep learning methods in automated species detection. YOLOv5 method marked the highest 
precision value across all dataset and is most suited for identifying small and large species.  The classical 
approaches are still relevant in identifying large species and can be utilized for resource constraint 
environments where cost matters. 
This study is based on the publically available dataset that covers limited geographical areas. As OpenCV 
package does not support fusing temporal data, future studies should consider incorporating those with self 
supervised pre- training and optimizations to improve the accuracy.  
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