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Abstract 
Background/Objectives: Cyclones are perilous, and disaster management depends heavily on accurate intensity estimation. The primary objective of this research is to develop 
a deep learning-based technique that uses satellite imagery to assess cyclone intensity. The research involves use of Capsule Convolutional Neural Networks (Caps Nets), which 
are intended to handle complex patterns and preserve spatial hierarchies. With the ability to preserve positional information and enhance the perception of spatial relationships 
in satellite imagery, Caps Nets overcome certain drawbacks of conventional Convolutional Neural Networks. Regression modeling was used in this study to forecast cyclone strength 
based on INSAT 3D satellite imagery, offering a structured technique for evaluating meteorological data and producing precise forecast estimations. The results indicate that the 
Caps Nets-based approach yields more accurate cyclone intensity estimates compared to traditional Convolutional Neural Networks with a MSE of 1.51 and RMSE of 2.07. 
The improved pattern identification capabilities of this method contributes to improved estimates of wind speed and evaluations of cyclone intensity. The findings indicate that 
this technique has the potential to considerably improve disaster response and preparedness by providing more precise and accurate data for evacuation planning and early warning 
systems. By retaining spatial hierarchies and comprehending complex patterns in satellite imagery, Capsule Convolutional Neural Network offers a novel approach to cyclone 
intensity estimation, providing improved accuracy and robustness compared to conventional methods. 
Keywords: Tropical Cyclone, Capsule Convolutional Neural Networks (Caps Nets), Deep Learning, Cyclone Intensity Estimation. 
 
INTRODUCTION 
Accurately predicting cyclone intensity is vital for effective disaster management [24], yet it remains a complex challenge due to the intricate and not fully 
understood atmospheric and oceanic dynamics involved in cyclone formation [18]. The Indian subcontinent, with a 7,516 km long coastline, is among the most 
cyclone-prone regions globally. Approximately 10% of the world’s tropical cyclones impact India, affecting a 5,400 km stretch of mainland coastline, 132 km in 
Lakshadweep, and 1,900 km in the Andaman and Nicobar Islands. In total, 84 coastal districts across 13 coastal states and Union Territories (UTs) are vulnerable 
to cyclonic events. The eastern coast—comprising Andhra Pradesh, Odisha, Tamil Nadu, and West Bengal—along with the UT of Puducherry, and the western 
coast state of Gujarat, are especially susceptible. Notably, about 40% of India’s population resides within 100 kilometres of the coastline.Historical data from 1980 
to 2000 indicates that, on average, 370 million people in India were exposed to cyclones annually. Economic analyses show that natural disasters can result in 
losses amounting to up to 2% of the national GDP and as much as 12% of Central Government revenue. Given the limited availability of direct cyclone wind 
measurements, meteorological satellite sensors have become essential tools in intensity estimation. Microwave data from geostationary and polar-orbiting satellites 
are now primary resources for this purpose [25]. While polar-orbiting satellites offer structural insights into cyclones, geostationary satellites provide high-resolution 
imagery that enables indirect assessment of key cyclone parameters. However, intensity estimates derived solely from satellite data still exhibit considerable 
uncertainty. For instance, the National Hurricane Center reports a 10–20% margin of error in such estimates, leading to forecast inaccuracies [20]. Enhancing 
short-term intensity prediction capabilities is therefore critical to improving early warning systems and national disaster preparedness. In recent years, advancements 
in deep learning have significantly impacted various fields, including meteorology and disaster management [11][13]. The growing frequency and severity of cyclonic 
storms underscore the need for precise and timely intensity and trajectory estimation to support effective disaster mitigation strategies. Traditional methods like 
the Dvorak technique [10] have contributed meaningfully to cyclone intensity estimation, but they often involve subjective interpretation and lack the automation 
and precision of modern computational approaches [14]. This study addresses these limitations by proposing a deep learning-based approach—specifically, the use 
of Capsule Convolutional Neural Networks (Caps Nets)—to estimate cyclone intensity using raw satellite imagery from the INSAT-3D satellite. INSAT-3D offers 
high-resolution meteorological imagery, enabling detailed observation of cyclonic systems. By leveraging the pattern recognition capabilities of convolutional neural 
networks (CNNs), this research aims to develop a more accurate, efficient, and automated framework for cyclone intensity estimation, ultimately contributing to 
improved disaster response and resilience. 

RESEARCH CONTRIBUTION 
Recent advancements in deep learning have significantly contributed to the field of tropical cyclone intensity estimation and prediction. Maskey et al. (2020) 
introduced Deepti, a real-time deep learning-based system designed to estimate the wind speeds of tropical cyclones solely from satellite imagery [1]. Their study 
demonstrates the effectiveness of convolutional neural networks (CNNs) in capturing complex patterns in satellite data to accurately estimate cyclone wind speeds, 
thereby enhancing forecasting capabilities. They also propose future research directions, including the extension of their model to less intense cyclones using 
passive microwave data and the detailed analysis of specific cyclone events—particularly those involving rapid intensification—to better understand the model's 
performance under varying meteorological conditions.Similarly, Nandhini et al. (2020) [4] explored cyclone classification and prediction using deep learning 
architectures, with a focus on CNNs and recurrent neural networks (RNNs). Their experimental results reveal that CNNs outperform RNNs in classification 
accuracy, achieving a success rate of 83.8% using 1,380 input features. This study underscores the utility of deep learning techniques in cyclone modelling and 
highlights the need to investigate various network architectures to further optimize prediction accuracy and robustness.In contrast, Kabir et al. (2016) [6] focused 
on cyclone intensity estimation using the traditional Dvorak Technique (DVKT), a longstanding method based on satellite image interpretation. By integrating 
satellite technology with digital interpretation tools, their research emphasizes the continued relevance of DVKT in real-time cyclone monitoring. While not based 
on deep learning, this study contributes to the broader understanding of cyclone dynamics and supports the refinement of conventional intensity estimation 
techniques through modern technological enhancements. 
 
RESEARCH GAPS 
Despite the notable advancements in applying deep learning techniques to tropical cyclone intensity estimation and prediction [16][19], several critical gaps remain 
in the existing body of research. One key limitation is the insufficient exploration of deep learning models across cyclones of varying intensities, particularly weaker 
systems. Expanding model applicability to such cases is essential for enhancing the generalizability and accuracy of forecasts across the full spectrum of cyclonic 
events. Moreover, although convolutional neural networks (CNNs) have demonstrated strong performance in cyclone classification tasks, further investigation 
into alternative deep learning architectures—such as Capsule Networks, Transformers, or hybrid and ensemble models—could yield improved predictive accuracy 
and model robustness.Another important area requiring deeper analysis is the influence of environmental factors and structural changes within cyclones, especially 
during phases of rapid intensification. Current models often struggle to maintain accuracy under such dynamic conditions, highlighting the need for more 
comprehensive approaches that integrate physical and contextual storm parameters. Addressing these gaps will not only enhance the scientific understanding of 
tropical cyclone behaviour but also support the development of more reliable early warning systems, ultimately strengthening disaster preparedness and risk 
mitigation strategies. 
 
Research Questions 
This research is guided by the following key questions: 

1. Can Capsule Networks (Caps Net) effectively learn and extract relevant features from raw satellite imagery to accurately estimate cyclone intensity and classify 
cyclone severity? 

2. To what extent does temperature variation around the cyclone’s eye enhance the accuracy of intensity estimation? 
3. Can deep learning models reliably predict the immediate trajectory of tropical cyclones with high spatial and temporal precision? 
4. How dependable are predictions regarding cyclone weakening or strengthening when based on the analysis of swirl asymmetry or skewness emanating from the 

storm's eye? 
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ABOUT THE DATA 
The dataset utilized in this study is the INSAT-3D Infrared and Raw Cyclone Imagery, published as open-source by the Indian Space Research Organisation (ISRO) 
on Kaggle. This dataset comprises satellite images of tropical cyclones over the Indian Ocean, covering the period from 2012 to 2021. It includes both infrared 
(IR) and raw grayscale images, capturing various phases of cyclone development.For the purpose of this research, the raw cyclone images are primarily used, as they 
preserve essential unprocessed visual features necessary for deep learning-based analysis. The dataset is labelled, with each image associated with an intensity value 
(in knots) provided in a CSV file in tabular format. These intensity annotations serve as ground truth for model training and performance evaluation. 

A representative sample of a raw cyclone image and its corresponding infrared image of the same event is displayed below to illustrate the dataset's visual 
characteristics and diversity. 

 

Fig. 1. Figure shows image of a cyclone captured by INSAT3D (both Infrared and Raw) displayed 
side-by-side 

Methodology 
Image Processing 
Image processing plays a critical role in extracting meaningful features from satellite imagery to determine the strength and trajectory of cyclones. It involves a 
range of computer vision techniques, each designed to identify and analyze specific aspects of cyclone imagery. Computer vision algorithms act as our detectives, 
meticulously analyzing satellite images to identify characteristics that foreshadow a cyclone's intensity. 

Cyclone's Shape: Contour Detection 
Imagine tracing the outline of the cyclone in the image. Computer vision algorithms achieve this by identifying pixels with significant intensity variations at 
the edges. These variations often mark the boundaries between the cyclone's cloud formations and the surrounding environment. Common algorithms for 
contour detection include: 

Active Contours (Snakes): It is used to trace and follow the boundaries of objects within an image, crucial for identifying the outer contours of cyclones. These 
algorithms work by minimizing an energy function, which balances smoothness and the force to adhere to high-gradient areas, allowing them to flexibly adjust 
to cyclone shapes and structures. By tracking these contours, deep learning models can focus on the areas where the cyclone's cloud formations meet the 
surrounding atmosphere, which is often indicative of the cyclone's overall intensity.Level Sets: It offers an alternative approach to contour detection, 
representing boundaries as the zero- level of a higher-dimensional function. This technique iteratively adjusts the curve's shape, enabling the precise 
identification of complex cyclone contours, especially when dealing with more challenging image characteristics such as occlusion or irregular shapes. 

Cyclone Edges: Edge Detection 
Another crucial aspect involves edge detection. Edges often represent significant changes in intensity within an image and can reveal important structural 
details of the cyclone. Edges can be identified using various algorithms, including: Sobel Operator: It is a fundamental edge detection technique used to detect 
changes in intensity within an image. It can identify significant gradients, indicating the boundaries between different cloud formations. It utilizes a filter that 
calculates the approximate derivative of the image intensity in horizontal and vertical directions. Significant values in the resulting image correspond to 
potential edges. This is critical for determining the structure and organization of a cyclone, which in turn can provide insights into its intensity. 
Canny Edge Detection: It is another popular edge detection method, incorporating a multi-stage process that includes gradient calculation, non-maximum 
suppression, and edge linking. It helps in capturing precise edges and reducing noise, allowing for a cleaner extraction of cyclone-related features. 

Advanced Feature Extraction 
Beyond contours and edges, deep learning-based cyclone intensity estimation benefits from more advanced computer vision analytical techniques to extract 
additional features that provide insights into cyclone intensity. Here are some potential areas of exploration: 
Density Analysis: Statistical measures can be employed to quantify the distribution of pixels within the cyclone region. This can reveal information about the 
compactness or dispersion of clouds, potentially offering clues about the cyclone's organization and strength.Skewness Measurement: Asymmetry in the 
cyclone's cloud formations can be indicative of its rotational characteristics and potential intensity changes. Skewness, a statistical measure of asymmetry, can be 
calculated to quantify the deviation from a symmetrical distribution.Trajectory Prediction: By analyzing the cyclone's contour and density distribution in 
multiple satellite images captured over time, computer vision algorithms can potentially estimate the cyclone's immediate movement and trajectory. This can 
involve techniques like optical flow, which tracks the motion of apparent patterns in image sequences. [9]By strategically combining these computer vision 
techniques, the model meticulously prepares the satellite images for the Caps Net. The extracted features, encompassing the cyclone's shape, edges, density 
distribution, and potentially its trajectory, provide valuable insights that the Caps Net can leverage to estimate 

cyclone intensity with remarkable accuracy. This paves the way for early warnings and improved disaster preparedness efforts. 

Flow of Deep Learning Model 
This work proposes a deep learning- based approach [12] for estimating cyclone intensity using Capsule Convolutional Neural Networks (Caps Net) [5]. Caps 
Nets are a recently proposed deep learning model that is designed to overcome the limitations of CNNs in capturing complex patterns and relationships in the 
data. The proposed approach takes a sequence of satellite images of a cyclone as input and outputs the estimated intensity label. The mode is trained end-to-
end using a supervised learning approach with a loss function that minimizes the difference between the predicted and ground truth intensity labels. A diagram 
illustrating the model is shown below in fig 2: - 
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Fig. 2. Figure shows proposed CapsNet model. 
 
The proposed system for cyclone intensity estimation leverages the power of deep learning and, specifically, incorporates the innovative Capsule Network (CapsNet) 
architecture. CapsNets have demonstrated the ability to capture hierarchical and spatial relationships within images, making them an ideal choice for recognizing 
intricate structures and patterns in cyclone satellite imagery. 

Input Layer: The system takes INSAT 3D satellite images as input. These images are preprocessed to ensure consistency in format, remove noise, and enhance 
their quality.Convolutional Layers (Primary Capsules): The initial layers of the CapsNet consist of a series of convolutional layers. These layers aim to extract 
low-level features from the input images, such as edges, shapes, and basic structures.[2][3]Primary Capsules: The primary capsule layer follows the convolutional 
layers. In this layer, capsules are used to group low-level features into higher-level structures. Capsules are groups of neurons that work together to recognize 
more complex patterns and spatial relationships. For cyclone intensity estimation, these primary capsules focus on identifying features like cloud formations, 
eyewall organization, and spiral band structures, which are indicative of cyclone strength.Routing by Agreement: The heart of CapsNets is the "routing by 
agreement" mechanism, where the primary capsules collaborate to recognize complex patterns. During this process, capsules communicate and "vote" on the 
presence of specific features. This iterative routing mechanism helps establish the relationships between different features and components of a cyclone.Digit 
Capsules: The digit capsule layer is responsible for further consolidating the information and relationships established by the primary capsules. It learns to 
recognize and represent more abstract and high-level features that are indicative of cyclone intensity. Intensity Estimation: The final layer of the CapsNet is 
responsible for estimating the cyclone's intensity. It takes the output from the digit capsules and computes an estimate of the cyclone's intensity, which can be 
a numerical value or a category representing the cyclone's strength. The proposed system's CapsNet architecture offers a promising approach to cyclone intensity 
estimation, with the potential to outperform traditional methods by capturing intricate features and spatial relationships crucial for accurate predictions. The 
integration of CapsNets into the deep learning model enhances its ability to understand and estimate cyclone intensity, ultimately contributing to more 
effective early warning systems and disaster preparedness. 

Metrics for Evaluation of Model 
The output that is to be produced is intensity of the cyclone in knots. Since it is a numeric continuous value, the metrics to measure performance of the neural 
network model would be the following: - 

Mean Squared Error (MSE): The MSE is calculated by taking the difference between the forecasts made by our model and the actual data, squaring it, and 
averaging it over the entire dataset. Since we are constantly squaring the errors, the MSE can never be negative. The following expression provides the official 
definition of the MSE: 

 

Where, n is the number of samples under consideration, Yi is the desired / expected / actual value and Ŷi is the calculated / observed value. 

Root Mean Squared Error (RMSE): The square root of the mean of the square of all errors is known as the root mean squared error (RMSE). RMSE is frequently 
employed and is regarded as a superior all- purpose error measure for numerical predictions. 
 

 

 
Where, n is the number of observations that can be used for analysis, Xt are the observations, and Xp are the predicted values of a variable. 

Since RMSE is scale-dependent, it should only be used to evaluate forecasting errors of various models or model configurations for a single variable and 
not between variables. 

Pseudo Code 
The pseudo code for deep learning [7] based cyclone intensity estimation is as follows: - 

BEGIN 
Data Preparation 
Load INSAT 3D dataset 
Preprocess images (resize, normalize) Prepare meteorological data 
Deep Learning Model Setup 

Choose architecture (CNN, Capsule Network) Define model structure (layers, parameters) Compile model 
(loss, optimizer, metrics) 
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Model Training 
Split dataset (train, validation sets) Train model using training data 
Monitor training progress (loss, accuracy) 
Model Evaluation 
Evaluate model using validation set 
Calculate performance metrics (MSE, R-squared) Visualize results (predicted vs. actual intensity) 
Prediction 
Prepare new/unseen cyclone images and meteorological data Use trained model to predict intensity 
Post-processing 
Interpret and analyze prediction results Apply post-processing as needed 
Reporting 
Generate reports or visualizations of cyclone intensity Communicate results to stakeholders 
END 
The system processes and analyzes these input data to estimate the intensity of cyclones. Deep learning models, such as convolutional neural networks (CNNs) 
and capsule networks (CapsNets), are trained on historical and labeled data to make predictions based on new satellite imagery and meteorological observations. 

 
RESULTS 
Intensity Prediction: The intensity prediction module is tested against historical cyclone intensity data to assess its ability to accurately predict cyclone intensity 
levels. Performance metrics such as mean absolute error and correlation coefficient are calculated to quantify the model's accuracy and precision. 

 

Fig. 3. Wind speed intensity output 

Wind speed is typically quantified in kilometers per hour (kmph) and is determined by analyzing intensity data provided in a .csv file, which aligns with the 
parameters the model has been trained on. These intensity values are utilized to assess the accuracy of the model's predictions through metrics like mean 
absolute error. Table 4.4.3 showcases the corresponding values for loss and root mean square error (RMSE), offering insights into the model's performance 
evaluation. 

Table 1: Model Training Result 
 

Performance Measure Value 

Mean Squared Error 1.5196 

Root Mean Squared Error 2.0730 

Thus it can be understood that the model is performing well on unseen data. 

Severity Classification: The severity classification module is tested against ground truth severity labels (e.g., Low Pressure Area, Depression, Cyclonic Storm) 
to evaluate its classification accuracy. Metrics such as accuracy, precision, recall, and F1-score are computed to assess the model's effectiveness in categorizing 
cyclone severity levels. 

 

Fig. 4. Classification based on intensity value 

Classification of intensity is done by referring to the values mentioned in the table below: - 

Table 2: Classification of cyclone into its type of disturbance based on its wind speed. 
 

Type of Disturbances Associated Wind Speed in the Circulation 
Low pressure Area Less than17 knots (<31 kmph) 

Depression 17 to 27 knots 
(31 to 49 kmph) 

Deep Depression 28 to 33 knots 
(50 to 61 kmph) 

Cyclonic Storm 34 to 47 knots 
(62 to 88 kmph) 

Severe Cyclonic Storm 48 to 63 knots 
(89 to 118 kmph) 

Very Severe Cyclonic Storm 64 to 119 knots 
(119 to 221 kmph) 

Super Cyclonic Storm 119 knots and above (221 kmph and 
above) 

A conditional statement, using if-else logic, is employed to classify disturbances, which informs the formulation of a mitigation plan recommended to the user. 
Trajectory Prediction: The trajectory prediction module [17] is validated against observed cyclone trajectories to measure its predictive accuracy. Metrics such 
as root mean square error (RMSE) and mean absolute error (MAE) are calculated to quantify the model's trajectory prediction errors. 
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Fig. 5. Image showing next immediate trajectory of the cyclone 

In this stage, the goal is to predict the imminent path of the cyclone, specifically pinpointing the location of its eye in the upcoming minutes. This prediction is 
achieved by examining the perimeter of the cyclone and analyzing its configuration. Sections of higher density within the cyclone indicate a greater likelihood of 
the prevailing winds redirecting the cyclone along that particular trajectory. 
Potential Weakening Assessment: The potential weakening assessment module is tested against historical cyclone data to evaluate its ability to predict potential 
weakening events. Performance metrics such as sensitivity, specificity, and receiver operating characteristic (ROC) curve analysis are used to assess the model's 
predictive capability. 

 

Fig. 6. Image showing output for skewness and symmetry analysis of cyclone 

Density-based computations are utilized to assess the concentration of stormy regions, determining their compactness. Skewness, alongside the intensity of 
concentration, is computed to gauge the deviation of the cyclone's structure from its central eye. This measurement serves as an indicator of the cyclone's 
potential weakening, attributed to the disruptive effects of wind shear. A greater skewness suggests a higher probability of storm deterioration, as it signifies 
the dispersion and fragmentation of storm clouds due to environmental forces. 
Edge Detection: The edge detection module is validated against ground truth edge maps of cyclone 

 
imagery to measure its performance in detecting cyclone boundaries. Metrics such as precision, recall, and F1-score are computed to evaluate the accuracy of 
edge detection outputs. 
 

Fig. 7. Image showing areas that the model determines as important features 

In this context, the model identifies and emphasizes essential features within the figure to enhance its understanding of the cyclone. The highlighted regions, 
depicted in varying shades of red, represent the edges or curves of the cyclone. The intensity of the red hue correlates with the density of these areas, with 
darker shades indicating higher density and greater significance of these features in characterizing the cyclone. 
Temperature Estimation: The temperature estimation module is tested against observed temperature data around cyclone eye walls to assess its ability to 
estimate average temperatures accurately. Mean absolute error (MAE) and correlation coefficient are calculated to quantify the model's temperature estimation 
errors. 

 

Fig.8. Image showing output for average temperature of wall of the eye of cyclone 

Utilizing the temperature values across the cyclone and considering the density of specific regions enables the calculation of the average temperature surrounding 
the eye wall of the cyclone. This process serves to validate the cyclone's intensity, as a higher intensity cyclone typically exhibits a colder eye wall. 
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DISCUSSION 
The Deep Learning-based Cyclone Intensity Estimation project employs the Capsule Neural Network (CapsNet) model to achieve remarkable accuracy across 
multiple crucial tasks in cyclone monitoring and forecasting. The model accurately predicts cyclone intensity levels, classifies severity, forecasts trajectories [15], 
detects cyclone boundaries in satellite imagery, and estimates temperatures around the eye wall. These capabilities enhance decision-making processes for 
stakeholders involved in disaster preparedness and response, offering valuable insights into cyclone characteristics and behavior. By leveraging advanced deep 
learning techniques and comprehensive meteorological data, the project contributes to improved disaster resilience, climate adaptation strategies, and the 
advancement of scientific knowledge in meteorology [23], machine learning, and disaster management. 

 
CONCLUSION 
In this study, a deep learning-based approach for cyclone intensity estimation using Capsule Convolutional Neural Networks (CapsNets) has been proposed. 
The results demonstrate that this method outperforms traditional Convolutional Neural Networks, offering a more accurate and robust means of predicting 
cyclone intensity from satellite imagery. The implementation of CapsNets for cyclone intensity estimation has the potential to transform disaster management 
[22] and evacuation planning. The more precise forecasts enable authorities to make better-informed decisions, thereby reducing the risks associated with severe 
weather events [8]. This study underscores the value of deep learning [21] in addressing critical real- world challenges, offering a promising direction for further 
research and development. 
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