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Abstract 
Artificial Intelligence has made giant strides in medical image classification using the development of Convolutional 
Neural Networks (CNNs) in the past decade. Different CNN architectures like Dense-Net Res-Net, etc., are used in the 
medical industry to identify patterns and features leading to a faster diagnosis. The fundamental motivation behind this 
research article is to study the application of different variants of Dense-Net architecture (DenseNet121, 169, and 201) 
towards breast cancer detection and provide a comparative analysis of Dense-net variants to the intended area of research 
with the support of digital mammography two mediolateral oblique (MLO). Two craniocaudal (CC) views of a single 
patient are used to extract the distinct features of breast cancer detection. The proposed research utilizes 9695 digital 
mammography images for this study. All input images are classified into three categories, Benign, Cancer, and Normal, 
with the help of expert radiologists as ground truth. All the proposed classifier's performances are tested with different 
testing matrices such as precision, responsiveness, and specificity. The concluding results demonstrate that these intended 
Dense-net architecture variants have delivered an exemplary performance with the highest accuracy of 94.90 % during 
training and 96.924% during testing on CC views. Precision, Recall, and F1 scores are 0.965, 0.969, and 0.967, 
respectively. A comparative analysis of the proposed model with its variants and other state-of-the-art methods is provided. 
Comparative research shows that DenseNet architecture can provide more accurate results when only left CC views are 
used as input. Acquired outcomes are again validated qualitatively with a radiologist expert in the field of breast cancer. 
The proposed architecture achieved state-of-the-art results with a fewer number of images and with less computation 
Keywords: Breast cancer, Classification accuracy, Digital mammography, Dense-Net architecture, deep learning. 
 
INTRODUCTION 
Breast cancer is the world's fifth highest standard casualty rate (685,000) among all diseases. In the last five 
years, 7.8 million women were healed of breast cancer and survived. Breast cancer can occur in women of 
any generation [1-2]. Nevertheless, it is more expected in older eras. Early diagnosis is crucial in breast cancer, 
as with all cancer types. Early diagnosis of breast cancer contributes to a reduction in the frequency of 
premature deaths [3]. Different image detection modalities such as Digital Mammography, Magnetic 
resonance imaging (MRI), Molecular breast imaging (MBI), and Breast biopsy are used to detect and predict 
breast cancer with the support of expert radiologists [4]. Figure 1 depicts the different breast cancer 
classifications. 
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Fig.1 - Breast cancer classification (Image Courtesy National cancer institute) 
Four views of the input raw digital mammography are shown in figure-2. All the views have equal significance 
in breast cancer detection. A single patient's two mediolateral oblique (MLO) and two craniocaudal (CC) 
views are used to extract the distinct features of breast cancer detection [5]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2- Input raw images- (A) Left_MLO (B) Left_CC (C) Right_MLO (D) Right_CC. 
Many study research efforts have been in advancement for an automatic objective inspection of breast cancer 
over the previous few decades. The preliminary stage investigation concentrates on image analysing methods 
such as area-based thresholding, region growing, and clustering algorithms. [6,7] Machine learning (ML) 
techniques based on different retrieved image topographies from the histogram, texture intensities, patterns, 
and image acquisition characteristics appeared as a significant work. Deep learning (DL) algorithms provide 
another advancement in identifying breast cancer. The fundamental merits of deep learning algorithms are 
that they can go substantially more in-depth and find all the meaningful attributes inside the image. Due to 
increased system architecture and hardware capacity, it is effortless to train DL algorithms more intensely to 
act as a more efficient tool for breast image analysis. With this enhancement, DL architecture becomes an 
excellent tool for analyzing medical images. Numerous DL techniques, such as Google-Net, Res-Net, VGG19, 
Residual networks, and Dense-Net, are recorded in the literature [8]. However, the "vanishing gradient 
problem" is a curse for deep learning algorithms as the network goes profound. Dense-Net architecture has 
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recently provided a novel solution to the connectivity problem. The interface of Dense-Net unites all the 
layers, determining on distinct map dimensions in feed-forward type; [9] hence, the distinct layer receives 
input from all the previous layers and conveys its map to all the farther layers. Therefore, the Dense Net join 
feature map passes via all the following layers instead of outlining attributes such as ResNet. This concept 
includes L (L+1)/2 connections instead of L, recognizing a dense connectivity pattern [10]. The result of this 
connectivity principle, i.e., Dense Net architecture, delivers the subsequent benefits: 
1. Adequate resolution for gradient vanishing. 
2. Merger in characteristic distribution. 
3. Facility of feature recycling. 
4. There is a meaningful decrease in training parameters. 
5. Leisurely to train and produces comparable parameter efficiency. 
Due to these edges, employing this model without pretraining for medical image analysis is helpful. The 
essential target of this research study is to analyze various variants of the dense net architecture for breast 
cancer detection and compare inter-variant performance with other existing methods. The research article 
flow hereafter follows: Section 2 describes the related work; Section 3 depicts the dataset; Section 4 shows 
the proposed methodology; and Section 5& 6 highlights the results and discussion. Finally, Section 7 
concludes the research article with a conclusion and future scope. 
 
Related Work 
Over the last decade, breast cancer detection and deep learning have become integral to the research domain. 
This section discusses various previous deep learning approaches to understand the background of the 
intended area of research. The principal intention is to enhance the classification of deep learning classifiers.  
Another novel approach was recommended by Eroğlu et al. [11].  In a CNN-based categorization system, the 
study's main goal was to diagnose breast cancer using digital mammography, divided into three categories 
(benign, malignant, and normal). The proposed system used three CNN models, the Alexnet, MobilenetV2, 
and Resnet50, which acted as the Hybrid structure's foundation. The most valuable characteristics were then 
selected using the mRMR (Minimum Redundancy Maximum Relevance) feature selection approach and 
categorized using ML classifiers like SVM and KNN. Their investigation used 780 digital mammography 
images, and the SVM classifier achieved the highest accuracy: 95.60%. Shen et al. [12] suggested a CNN 
Model to detect cancer status on the DDSM and INbreast datasets. The proposed model has an AUC of 0.91, 
a sensitivity of 86.1%, and a specificity of 80.1% on the DDSM dataset. The same model has an AUC of 
0.98, a sensitivity of 86.1%, and a specificity of 96.1%.   Ragab et al. [13] projected a new AlexNet, a deep 
convolutional neural network (DCNN) type architecture. This network was fine-tuned to only two classes 
rather than 1000, and to gain better accuracy, the last fully connected layer was then connected to the support 
vector machine (SVM). The two databases used were Digital Database for Screening Mammography (DDSM); 
and the Curated Breast Imaging Subset of DDSM (CBIS-DDSM). When manually cropping the ROI from 
the mammography, the accuracy of the newly trained DCNN architecture was 71.01 percent. The samples 
acquired using two segmentation algorithms, cropping and rotation, had the most significant area under the 
curve (AUC) of 0.88 (88%). Moreover, the accuracy of the DCNN was raised to 73.6 percent when images 
from the CBIS-DDSM were used. As a result, the SVM accuracy increased to 87.2 percent, with an AUC of 
0.94. (94 per cent).A three-stage deep learning methodology for mammography evaluation was developed by 
Dhungel et al. [14] In the proposed approach, mass detection was carried out by various deep learning 
techniques, which were improved through Bayesian optimization. Second, a level set technique intended for 
mass segmentation improved a deep structured output learning. The final step involved mass classification, 
which was accomplished using a DL classifier that had been pre-trained using regression and was then 
adjusted based on the labels of the breast mass classification dataset. The proposed model was tested on the 
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INbreast dataset, and the results were as follows. According to the system's results, 90 percent of masses could 
be found with one false positive per image, a segmentation accuracy of 80 to 85 percent, and final 
classification (as benign or malignant) that reaches a sensitivity (Se) of 0.98 and a specificity (Sp) of 0.7. AUC 
- 0.76.Zheng et al. [15] suggested a three-step recurrent neural network (RNN)-based CAD system to improve 
breast cancer identification. The first step included localizing the potentially malignant areas. The three 
detecting algorithms that were used were the Haar features and Viola-Jones Algorithm, Local Binary Pattern 
and Histograms of Oriented Grading. Secondly, the regional photos of these suspicious areas would be input 
into a pre-trained CNN model (pre-trained on the ImageNet dataset) for feature extraction. For this study, 
four different CNNs were used to compare them. They were VGG-19, ResNet50, DenseNet201 and 
Inception ResNetV2. Three separate scans—a registered scan, a current scan, and the difference between the 
two scans as the third image—were used to extract these features. Finally, an RNN classifier that can consider 
numerous follow-up scans and serve as a temporal assessment is trained using these three images. Although 
the proposed method used ResNet50 as the CNN to be used, DenseNet201 narrowly surpassed the working 
of all other CNNs, giving an accuracy of 0.993 compared to ResNet50’s 0.991. The reason ResNet50 is 
proposed is that ResNet50 takes the least time for feature extraction and does it in nearly one-third the time 
that DenseNet201 takes. The novel idea used in this system is that it uses the current and a past scan of a 
subject for better and more efficient learning, which helps produce accurate results. But the dataset size used 
for this experiment is very small.Al-Ansari et al. [16] suggested an integrated CAD system to screen 
mammograms that use DL approaches for breast mass detection, segmentation, and classification. You-Only-
Look-Once (YOLO) for mass detection. Around 410 mammograms from the INbreast database served as this 
system's training and testing data. The dataset was small; data augmentation was done on the existing dataset. 
The images were rotated at 45-degree angles, making 896 mammograms available. Later, transfer learning was 
used to initialize all the DL model parameters for the segmentation portion. Finally, a simplified version of 
the AlexNet was utilized to classify the masses as benign or cancerous. The overall success rate of the 
prediction was 95.64 %. Pawar et al. [9] developed an AI-based MBD classifier using a multichannel DenseNet 
architecture for breast cancer detection using multichannel Densenet architecture. The architecture 
comprises a four-channel DenseNet model using transfer learning for extracting the significant features from 
four views of digital mammograms (two mediolateral oblique (MLO) views and two craniocaudal (CC) views) 
from a single patient. The performance was assessed using precision, responsiveness, specificity, and the area 
under the curve (AUC) achieved an accuracy of 96.67% during training and 90.06% during testing, with an 
average AUC of 0.9625. In another approach for cancer detection. Al-Antari et al. [18] enhanced the 
effectiveness of deep learning in diagnosing breast lesions. The system comprises three customized deep 
learning classifiers (ResNet-50, InceptionResNet-V2, and ordinary feedforward CNN) for breast lesion 
classification and a YOLO detector for breast lesion detection. The classifiers are assessed using 5-fold cross-
validation tests on DDSM and INbreast. Mohapatra et al. [19] compared the effectiveness of different CNN 
architectures, including AlexNet, VGG16, and ResNet50.The models were trained from scratch or fine-tuned 
using transfer learning with pre-trained weights. When trained from scratch, AlexNet achieved an accuracy 
of 65%, outperforming other models. Rybiałek et al.  [25] explored the potential of DenseNet architectures 
in classifying breast tissue irregularities, comparing three different DenseNet variants using mammography 
data. They considered a limited dataset consisting of 2,247 images per class. Training was done using stratified 
10-fold cross-validation to achieve statistically reliable estimates of the model's performance metrics. 
DenseNet-201 was observed to be the best model, giving 0.96 (AUC), 0.92 for precision, 0.90 for recall, and 
91% for accuracy. The researchers don’t consider the Multiview approach. In contrast, we have considered 
two mediolateral oblique (MLO) and two craniocaudal (CC) views of each patient to extract the distinct 
features for breast cancer detection. Mousa et al.[26] integrated a self-attention model into pre-trained 
DenseNet architectures. The proposed system attained an accuracy of 0.9939, exhibiting the effectiveness of 
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combining DenseNet with a self-attention model. Despite the approaches mentioned above, breast cancer 
detection is subjective and done by expert radiologists as objective methods provide mixed results. Deep 
learning algorithms do not produce more precise results because these are fundamental bottlenecks [17]. 
Another primary reason behind this is that deep learning algorithms require an enormous data value and 
authorized ground truth; hence, acquiring a large dataset is another challenge for researchers [18]. In addition 
to this, mammographic images are vendor-dependent; therefore, all vendor-specific pictures need to make the 
model more robust. The primary motivation behind this research is to investigate the transfer learning 
application of different DenseNet architectures to enhance breast cancer classification accuracy. 
Notably, various architectures have been designed and developed to examine the significant contribution of 
four mammography views of a single patient. 
 

Input Dataset 
The proposed research uses the publicly available dataset known as a database for screening mammography 
(DDSM) [19], with demonstrated pathogeny data marked as benign, normal, and malignant. Different data 
augmentation techniques like random rotating, vertical and horizontal flipping, cropping and zooming are 
used to enhance the original dataset. A total of 9695 mammograms are used for training and testing purposes. 
The aspired algorithm utilizes 2421 Right-MLO, 2421 Left_MLO, 1678 R_CC, and 3161 L_CC views. There 
are a total of 9695 mammographic images, and the distribution for Benign, Cancer and Normal is 3361, 
3606 and 2728, respectively. The ground truth of each class is labelled with the help of a specialist radiologist's 
team into three categories benign, normal, and malignant. Table 1 presents the details of the ground truth 
input dataset used in this proposed study. 

Table-1.  Input dataset used for training and validation of the proposed algorithm 
 

Breast cancer class Total number of Images 
Benign 3361 
Cancer 3606 
Normal 2728 
Total  9695 

 
 

4.0 Proposed Methodology  
This segment describes the proposed breast cancer detection technique and is split into three subsections as 
organized subsequently. 
4.1 Preprocessing of digital mammograms 
Digital mammography delivers all the edges of digital image processing to improve image quality, which can 
be additionally valuable for precise breast cancer diagnosis.  
Segmentation of Pectoral Muscle 
 Different researchers have recorded techniques for breast border detection and removal of the artefacts and 
noise if any. For breast border detection, breast skin-air interface segmentation is a tough job because the 
intensity of the border of the breast is identical to the background. The above-mentioned reason is the 
fundamental cause which converts pixels near the border into the background. The unprocessed image 
contains artifacts, tags and pectoral muscle. In our implementation, artifacts and tags are removed using filters 
and for pectoral muscle which appears equal white as that of the cancer tissue in mammograms, Breadth First 
Search (BFS) algorithm is implemented in our prior study. The BFS algorithm starts by identifying the 
connected components in the image. Starting from a seed point in the right corner, algorithm investigates 
neighboring pixels to locate the boundaries of the pectoral muscle. Once the pectoral muscle area is 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081505/table/T1/


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 9s, 2025 
https://theaspd.com/index.php 
 

840 

 

distinguished, the algorithm suppresses this region. This preprocessing step plays a key role in improving the 
overall performance of the model. 
 
Contrast enhancement 
Contrast enhancement is one of the solutions to reduce the noise and enhance the visibility of the image. 
[22-24] Various image processing methods are suggested by researchers, like Histogram equalization, Wavelet 
transform (W.T.), Adaptive contrast enhancement (ACE), and Adaptive histogram equalization (AHE). All 
the above-mentioned methods are demerits in words of noise reduction and processing time [18-21].  
The proposed research uses contrast enhancement with AGCWD (Adaptive Gamma Correction with 
Weighting Distribution) offered by [24]. Eq-1 describes gamma correction and histogram equalization. 
 

                                                              T(l) = lmax(
l

lmax
)γ                                                             (1) 

 

Where 𝑙𝑚𝑎𝑥 is max. Intensity of input image and 𝛾 is an adaptive parameter. Intensity value 𝑙Of image 
becomes T (𝑙) after gamma correction. This approach's main advantage is that, because of its nonlinear 
function, extraordinarily dark and light locations are unaffected by mid-tones. This allows for more precise 
identification of breast border pixel intensity, which helps to widen the breast border. This method also 
lowers noise at the breast skin-air interface and background, enhancing visibility at the breast border, which 
helps to create a delicate breast border. The contrast-enhanced version of the input image is illustrated Results 
of contrast enhancement is shown in Figure-3 

(a) (b) 
  

Fig.3- Image enhancement (a) Input image (unclear breast skin air interface) (b) Enhanced 
image. (Enhancement in the visibility of skin air interface) 

The Output Image obtained from the previous stage Fig.3 (b) was used for breast border detection. To identify 
the breast tissue as a single connected component, local thresholding was performed with four-class multi-
otsu thresholding. The primary reason behind the use of multi-otsu thresholding is to find the initial seed for 
the breadth-first search algorithm. Multi-otsu thresholding optimizes the variance between the classes. Each 
class acts as a distinct class concerning the intensity values of their pixels. Proposed method uses four classes 
(C1, C2, C3, and C4) for multi-otsu thresholding. The concept of between-class variance is given by Eq-2. 

 

                                                          σb
2 =  ∑ Pk(Mk − Mg)2K

k=1                                                   (2) 

where, 
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                                                                     Pk =  ∑ pii∈Ck
                                                           (3) 

and 

                                                                     Mk =  ∑ i pii∈Ck
                                                           (4) 

The results of multi-otsu thresholding are illustrated in Fig.4 (b). To select the initial seed, specific 
observations are performed with different multi-Otsu thresholding image samples. After detailed 
observations, the image pixel point (150, 20) is identified as an initial seed that will always remain inside the 
breast and pectoral muscle. In proposed algorithm, after initial seed selection, a breadth -first search is 
performed from the initial seed point till the threshold value is non-zero. This procedure provides a single 
connected component as a breast part illustrated in Fig.4(c). After breast part identification, all the tags and 
artifacts are removed from the background to improve image quality, as shown in Fig.4 (d). 
 

(a) (b) (c) (d) 

 

 

 

 

 

 

 
Fig.4- Breast border detection (a) Input mammogram (b) Multiotsu thresholding (four class) 
(c) Breast as a single connected component (d) Breast border detection and artifacts removal 

 
4.2 Design and development of Dense-Net architecture 
This research presents the feature learning capability of Dense-Net architecture's three variants known 
as DenseNet121, 169, and 201 offered by Huang et al. [10] toward breast cancer detection. The suggested 
technique utilizes four independent views and a combination of all the views of digital mammography as an 
input image. Fig 5-7 depicts the details about all three variants of Dense-Net architecture used in this study. 
4.2.1 Input convolutional layer 
The Input Convolutional Layer is the first layer common to all Dense Net architecture variants. This layer 
receives the images that need to be processed by the Dense Net model. This layer consists of the convolutional 
layer and the pooling layer. The convolutional layer consists of 7 x 7 kernels with a stride equal to 2. The 
essential function of this layer is to generate the feature maps from the input image with the support of the 
filters or feature detectors. The input convolutional layer is responsible for reducing the size of the input 
image to dimensions of 112 x 112 x 3. The resizing of the input image causes significant changes in the feature 
map to overcome this; the resized input image then passes through the second type of layer in the Input 
Convolutional Layer, which is the pooling layer of 3 × 3 maximum pooling, also with a stride equaling 2. As 
the name suggests, this pooling layer pools together all the data and calculates the total value in each patch 
of the feature map. The purpose of this layer is to ensure that small changes in the position do not lead to 
significant changes in the final output. Thus, the input layer's convolution and pooling operation reduce the 
input image size to 56 × 56 ×3 before being passed on to the dense blocks. 
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Fig.5- Functional block diagram of DenseNet 121 
 

4.2.2 Dense Block Layer 
The next type of layer that comes after the input Layer is the Dense Block Layer. In this dense block, all the 
features from the layers are extracted using K convolution kernels. The feed-forward connection mechanism 
is one of the merits of the dense Net, which enhances accuracy and reduces computation. The network growth 
rate, or parameter k, is referred to as a hyperparameter in Dense Net. The further dense-Net block consists of 
the bottleneck layer (1 × 1 convolution layer between batch normalization, ReLU, and 3 × 3 convolution 
layer). The number of times this bottleneck layer repeats in each Dense Block varies from block to block 
within the same Dense Block and different variants of the Dense Block. This entire dense block layer repeats 
four times in the whole architecture. After convolution in four dense blocks, each layer is in charge of creating 
a k-characteristic map, which also keeps the feature maps of each layer uniform in size.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6-Functional block diagram of the DenseNet 169 
 
4.2.3 Transition Layer 
The transition layer is responsible for making the feature map smaller by merging two nearby dense block 
layers. The transition layer consists of three layers, a batch normalization layer, and then a 1 × 1 convolution 
layer, followed by a 2 × 2 average pooling layer. After passing through all these layers within the transition 
layer, the image size changes to 7 × 7 × 3. The combination of a dense block layer followed by a transition 
layer is repeated three times and is followed by one last Dense Block Layer. The output of these 8 layers (1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5-     Functional block diagram of the DenseNet 121 
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Input Convolutional Layer + 4 Dense Block layers + 3 Transition Layers 1 output layer), Each layer serves as 
an input for the preceding level, as shown by the following formula Eq-5. 

 

                                                         Xl =  Hl([x0, x1 … . xl−1])                                                     (5) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7- Functional block diagram of the DenseNet 201 

 
4.2.4 Output Classification Layer 
The last and final layer of any Dense Net architecture is the output classification layer. The suggested design's 
output layer has a global pooling layer to retrieve meaningful information from each channel. The Flatten 
layer flattens extracted characteristics before transferring them to the individual dense layer. The suggested 
technique sorts of output into the appropriate class using the SoftMax classifier. 
 
5.0 Experimental analysis and result analysis   

The training and testing of the proposed models are performed on the TensorFlow framework on Google 
Co-laboratory, a free online cloud-based Jupyter notebook environment. All available dataset is divided into 
training and testing dataset. All the proposed models are trained with the Adaptive Moment Estimation 
(Adam) algorithm using batch sizes 4 and 150 epochs on the 80% dataset. Adam is an optimization algorithm 
that combines the ‘gradient descent with momentum’ algorithm and the Root Mean Square Propagation 
(RMSP) algorithm. Eq-6-7 defines the gradient descent with momentum in the Adam algorithm. 

 

   wt+1 =  wt − αmt                                                           (6) 

where,  
wt = weights at time t 
α = learning rate 
mt = aggregate of gradients at time t 
Eq-7 defines how the aggregate of gradients is calculated (mt), 
 

                                                         mt =  βmt−1 + (1 − β)
δL

δwt
                                                  (7) 
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where, 
δL = derivative of Loss Function 
δwt = derivative of weights at time t 
β = Moving average parameter 
The momentum algorithm accelerates the gradient descent process by employing the "exponentially weighted 
average" of the gradients. This method converges more quickly to the minima when averages are used. The 
second technique, RMSP, employs the "exponential moving average" to further optimise the procedure. Eq-
8 defines the RMSP used in the Adam algorithm. 
 

                                                                 wt+1 =  wt − (
αt

√(vt+ε)
∗

δL

δwt
 )                                                  (8) 

where.  
wt = weights at time t 
vt = sum of square of past gradients 
αt= learning rate at time t 
δL = derivative of Loss Function 
δwt = derivative of weights at time t 
ε = A small positive constant 
 
Eq-9 defines how the sum of square of past gradients is calculated (vt), 
 

                                                                vt =  βvt−1 + (1 − β) ∗ (
δL

δwt
)2                                             (9) 

Where, 
β = Moving average parameter  
The gradient descent is modified after each iteration to keep it consistent and impartial throughout the 
procedure. Hence, to provide a more optimised gradient descent, Adam Optimizer relies on the advantages 
or strong points of the previous two approaches. 
The weight correcting step size is the learning rate of the model. The learning rate is a configurable 
hyperparameter that regulates the rate by which the model learns. The initial learning rate for this model is 
0.1 (default value) and split by ten at 50% and or 75% of the total training epochs.  
The categorical cross-entropy serves as a loss function in this model, quantifying the distinction between four 
likelihood distributions. This loss function performs agreeably with the SoftMax activation function in the 
multiclass category. Eq-10 describes the categorical cross-entropy mathematically, which is: 
                                                              C. E. =  − ∑ tilog (si)                                                      (10) 
 
Where C.E. is cross-entropy ti and si ground truth and the convolutional neural network (CNN) score for 
each class ‘i’ in c. Table 2 presents the setting of different hyperparameters used to obtain the optimized 
results of the proposed architectures.  
Table-2 List of the different hyperparameter settings of DenseNet variants 
 

Hyperparameter DenseNet121 DenseNet121 DenseNet121 

Model Initial 
Learning Rate 

0.1 0.1 0.1 

https://www.frontiersin.org/articles/10.3389/fpubh.2022.885212/full#T3
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Image Size 320 x 320 x 3 320 x 320 x 3 320 x 320 x 3 

Batch Size 4 4 4 

Target Labels Ground Truth Ground Truth Ground Truth 

Data 
Augmentation 

Flipping Flipping Flipping 

Loss Function Categorical Cross 
Entropy 

Categorical Cross 
Entropy 

Categorical Cross 
Entropy 

Optimization 
Algorithm 

Adam Optimizer Adam Optimizer Adam Optimizer 

Validation 
Parameter 

Classification 
Accuracy 

Classification 
Accuracy 

Classification 
Accuracy 

The principal motivation behind this research article is to check the ability of different DenseNet 
architectures to detect breast cancer with the application of the independent and combinational views of 
digital mammography. All the available opinions on digital mammography are divided into seven cases: 1. 
Only Left MLO 2. Only Right MLO 3. Both MLO together 4. Only Left CC 5. Only Right CC 6. Both the 
CC together and 7. All the views together. This section describes the experimental result analysis of all three 
variants of the DenseNet architecture. All the models are experimentally tested for 125 epochs with the 
application of all seven cases of input digital mammograms. 
 
5.1 Experimental test case 1 
When all the input cases were applied across Dense-Net 121 Architecture with the same hyperparameter 
setting mentioned in the previous section, the proposed model provided the following results during testing 
and training, presented in Table- 3   in which testing and training classification accuracy is given in %. 
Table-3 the classification accuracy of DenseNet-121 during training and testing 

Sr.No. Sample case description % Classification Accuracy 
During Training During Testing 

1 Only Left MLO 92.32 90.928 
2 Only Right MLO 93.10 90.206 
3 Both MLO together 90.44 90.923 
4 Only Left CC 93.10 94.085 
5 Only Right CC 95.11 93.601 
6 Both the CC together 92.20 93.763 
7 All the views together 88.83 90.485 

Confusion matrix of only left CC and the all the views together result cases are depicted in Fig-8  
 
(a) (b) 
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Fig.8-  (a) Confusion matrix for Left CC  (b) Confusion matrix for all views together 
5.2 Experimental test case 2 
Similarly, when all the input cases were applied across Dense-Net 169 model provided classification accuracy 
during training and testing are shown in Table-4. 
Table-4 the classification accuracy of DenseNet-121 during training and testing 

Sr.No. Sample case description % Classification Accuracy 
During Training During Testing 

1 Only Left MLO 92.56 91.134 
2 Only Right MLO 93.36 90.309 
3 Both MLO together 91.61 90.665 
4 Only Left CC 94.09 94.637 
5 Only Right CC 96.48 93.452 
6 Both the CC together 93.09 94.485 
7 All the views together 89.78 90.975 

Confusion matrix of only left CC and the all the views together result cases are depicted in Fig-9  
 
(a) (b) 
 
 
 
 
 
 
 
 

 

Fig.9- (a) Confusion matrix for Left CC  (b) Confusion matrix for all views together 
 
5.3 Experimental test case 3 
Similarly, when all the input cases were applied across Dense-Net 201 model provided classification accuracy 
during training and testing are shown in Table-5. 
 
Table-5 the classification accuracy of DenseNet-201 during training and testing 

Sr.No. Sample case description % Classification Accuracy 
During Training During Testing 

1 Only Left MLO 93.33 91.753 

2 Only Right MLO 93.49 90.412 
3 Both MLO together 92.20 91.336 

4 Only Left CC 94.90 96.924 

5 Only Right CC 96.72 94.048 

6 Both the CC together 94.02 95.00 
7 All the views together 91.11 90.975 
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Confusion matrix of only left CC and the all the views together result cases are depicted in Fig-10  
 
 
 
 
(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.10-  (a) Confusion matrix for Left CC  (b) Confusion matrix for all views together 
 
5.4 Result analysis 
The proposed variant of DenseNet architecture was analyzed using the confusion matrix on the test dataset. 
Figure 8,9,10 depicts the heat maps of the proposed architecture, which further helps to analyze which 
category was accurately classified. A darker diagonal indicates the correct classification rate. The proposed 
models organize all the classes but found a little bit confused between benign and cancer. Further evaluations 
of the classification results are performed with precision, recall and F1-score. Among those parameters, 
precision is the ration of proportion of samples with optimistic forecasts affecting the total numeral of 
accurate praising samples. The recall ratio of precisely anticipated samples to the entire samples and the F1-
score is the ratio of precision and recall weight.  
Eq. [11-13] define the precision, recall, and the F1-score.  
 

                         Precision = 
TP

TP+FP
                                                          (11) 

                                                                 

                       Sensitivity/Recall = 
TP

TP+FN
                                                ((12) 

 

                     F1-Score = 
2

1

Precision
+

1

Recall

 = 
2∗(Precision∗Recall)

Precision+Recall
                                  (13) 

 
Where, TP = True Positive 

FP = False Positive 
FN = False Negative 

Table 6-8 highlights all the model’s performance of all the possible samples 
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Table-6 Presents the performance parameters of the DenseNet 121 Architecture 

DenseNet121 Case 1 Case 2 Case 3 Case 4 

Case B C N B C N B C N B C N 

Precision 0.864 0.959 0.900 0.905 0.915 0.882 0.898 0.934 0.895 0.950 0.953 0.900 

Recall 0.938 0.840 0.986 0.873 0.880 0.969 0.911 0.850 0.985 0.942 0.928 0.951 

F1 Score 0.900 0.896 0.941 0.889 0.898 0.924 0.905 0.890 0.938 0.946 0.940 0.925 

DenseNet121 Case 5   Case 6   Case 7      

Case B C N B C N B C N    

Precision 0.892 0.959 0.946 0.939 0.915 0.966 0.913 0.906 0.895    

Recall 0.925 0.857 1.000 0.910 0.933 0.975 0.881 0.878 0.964    

F1 Score 0.908 0.905 0.972 0.924 0.924 0.970 0.897 0.892 0.928    
 
B- Benign, C- Cancer and N- Normal 
In the above table, the highlighted version indicates that the model can perform better classification when 
only the left CC view is there compared to all the mammography views. Figure 11 depicts the accuracy and 
validation loss of DenseNet 121 architecture during training and validation. 
 
(a) (b) 
 
 
 
 
 
 
 

 

 
 
 
(c) 

 
 
 
(d) 
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Fig.11 (a) Classification accuracy and (b) validation loss for only left views (c) classification accuracy and 
(d) validation loss for All the views together. 

 
Table-7 Presents the performance parameters of the DenseNet 169 Architecture 

DenseNet169 Case 1 Case 2 Case 3 Case 4 

Case B C N B C N B C N B C N 

Precision 0.876 0.947 0.905 0.883 0.934 0.887 0.866 0.908 0.959 0.951 0.941 0.949 

Recall 0.921 0.863 0.979 0.914 0.860 0.947 0.904 0.873 0.966 0.957 0.945 0.896 

F1 Score 0.898 0.903 0.940 0.899 0.895 0.916 0.884 0.890 0.963 0.954 0.943 0.922 

DenseNet169 Case 5 Case 6 Case 7    
Case B C N B C N B C N    
Precision 0.908 0.954 0.937 0.927 0.945 0.966 0.905 0.915 0.909    
Recall 0.925 0.853 1.000 0.941 0.924 0.978 0.893 0.881 0.971    
F1 Score 0.916 0.900 0.967 0.934 0.935 0.972 0.899 0.898 0.939    

 
Figure 12 depicts the accuracy and validation loss of DenseNet 169 architecture during training and 
validation. 
(a) (b) 
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(c) (d) 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig.12 (a) Classification accuracy and  (b) validation loss for only left views  (c) classification accuracy and 
(d) validation loss for All the views together 

Table-7 Presents the performance parameters of the DenseNet 201 Architecture 

DenseNet201 Case 1 Case 2 Case 3 Case 4 

Case B C N B C N B C N B C N 

Precision 0.867 0.940 0.942 0.889 0.894 0.937 0.906 0.903 0.936 0.971 0.965 0.975 

Recall 0.921 0.873 0.986 0.867 0.898 0.962 0.895 0.890 0.967 0.965 0.969 0.975 

F1 Score 0.893 0.905 0.964 0.878 0.896 0.949 0.900 0.896 0.951 0.968 0.967 0.975 

DenseNet201 
Case 
5     

Case 
6     

Case 
7        

Case B C N B C N B C N    
Precision 0.914 0.950 0.949 0.930 0.953 0.973 0.930 0.896 0.904    
Recall 0.925 0.871 1.000 0.955 0.921 0.975 0.880 0.888 0.969    
F1 Score 0.919 0.909 0.974 0.942 0.937 0.974 0.904 0.892 0.936    

 
Figure 13- depicts the accuracy and validation loss of DenseNet 201 architecture during training and 
validation. 
(a) (b) 
 
 
 
 
 
 
 
 
 
 
 

 

(c) (d) 
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Fig.13 (a) Classification accuracy and  (b) validation loss for only left views  (c) classification accuracy and 
(d) validation loss for All the views together 

DISCUSSION  
Generally, Radiologists support all the views to detect breast cancer. The proposed research investigates an 
AI-based approach to predicting breast cancer from different mammography views. This method uses the 
effect of three models in several experimental settings using different mammographic views. In this approach, 
different end-to-end DenseNet variants are used to extract various features of digital mammography for breast 
cancer detection. The essential motivation is to check whether the classification accuracy of deep learning 
models depends on the individual mammographic views. The proposed research utilizes 9695 digital 
mammography images for this study. All input images are classified into three categories, Benign, Cancer, 
and Normal, with the help of expert radiologists as ground truth. Three classifiers, DenseNet 121, 169, and 
201, are used to check the performance of all the available opinions on digital mammography, which are 
divided into seven cases: 1. Only Left MLO 2. Only Right MLO 3. Both MLO together 4.Only Left CC 
5.Only Right CC 6. Both the CC together and 7. All the views together. The primary finding behind this 
research article is that all the proposed models provided better classification accuracy on Left CC views and 
worst performance when all the views are used together.  
A short comparison of the proposed models is highlighted in Table-8. 
Table 8- Comparative analysis of the all DenseNet models on different views 

Sr.No. Sample-Case 
Description 

% Classification Accuracy 
 DenseNet-121 DenseNet-169 DenseNet-201 
1 Only Left MLO 90.928 91.134 91.753 
2 Only Right MLO 90.206 90.309 90.412 
3 Both MLO together 90.923 90.665 91.336 
4 Only Left CC 94.085 94.637 96.924 
5 Only Right CC 93.601 93.452 94.048 
6 Both the CC together 93.763 94.485 95.00 
7 All the views together 90.485 90.975 90.975 

 
The proposed model is comparable with other existing state of art modes which is provided in Tabular form 
in Table-9. 
Table 9 -Comparative analysis of proposed method 

References Dataset Proposed Method 
Classification 
Accuracy 
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Zheng et al 
.[15] 

UCHCDM – 
102 

Object Detection + Feature 
Extraction using CNN + 
classifying using RNN 0.991 

Li et al 
.[24] 

2042 
DenseNet-II architecture 94.55% 

Mohapatra et al. 
[25] 

 
Mini-DDSM - 
9752 AlexNet, VGG16 and ResNet50 

AlexNet and VGG16 - 
65%, ResNet50 - 61% 

AlEisa et al. 
[27] 

CBIS-DDSM - 
2620 

Fully Convolutional Neural 
Networks and Beta Wavelength 
auto encoder 93% 

Al-antari et al 
.[28] 

 
 
INbreast – 410 

You-Look-Only-Once approach 
based Full resolution 
Convolutional Neural Network 
(FrCN) 95.64% 

Kishore Khan 
2024 

CBIS-DDSM  DenseNet121 with a residual 
model (RM-DenseNet) 96.50% 

Samudrala et al. 
[32] 

Histological 
dataset 

DenseNet-121 model + Attention 
based pyramid scene parsing 
network (Att-PSPnet). 94.68% 

Rybiałek et al. 
[25] 

2247 
DenseNet 121,169,201 91% 

Proposed 
method 

DDSM -9695 
Dense-Net variants 96.92% 

From comparative analysis following are the results outcome of this study, when model inputs are Left CC 
then each model has provided higher accuracy. Among all, Dense-Net 201 has provided 96.92% accuracy. In 
Multiview analysis all the models are recorded with less classification accuracy. The lowest classification 
accuracy is recorded at 90. Samudrala et al. [32]. performed the hybrid semantic segmentation networks that 
were introduced. Initially, the input image sets are applied to the pre-processing phase and, after that, subject 
to the segmentation process. Adaptive Local Gamma Correction (ALGC) enhanced the image contrast. The 
semantic segmentation topology was done by using the hybrid network of the DenseNet-121 model with an 
attention-based pyramid scene parsing network (Att-PSPnet). The Att-PSPnet network handled the extraction 
of the feature map and scene parsing. The Attention Gate mechanism improved the quality of the high-
dimensional hidden layer features. The pyramid dilated convolution module (PDM) is used to enhance 
accuracy and to make efficient decisions. The proposed method achieves 94.68% prediction accuracy, higher 
than the existing approaches.Out of all DenseNet 201 provided a superior view to the other two variants. 
From these results, we can conclude that deep learning classifiers provide less classification when we provide 
the mixed views.  

CONCLUSION 
In summary, the fundamental objective of this study is to classify breast cancer automatically. The study 
presents the novel method of Multiview analysis of mammographic images with DenseNet121, 169, and 201 
architectures. The proposed structure utilises the four views of a single patient to improve feature learning 
power through a Multiview approach. In the method, image contrast enhancement and pre-processing of 
the input image are implemented to enhance the condition of the training image data. The input images are 
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processed through different Dense-Net architectures to extract and fuse all the features. Analysis of the 
results suggests that the proposed model efficiently distinguishes between all classes but predominantly 
provides strong results on left CC views compared to other views. The best classification accuracy of the 
proposed model is recorded at 96.92 by Dense-Net 201 compared to other models. The introduced design 
consists of some weaknesses that have been discussed and will be addressed in the prospective study; with 
modifications, the proposed method is appropriate for application in clinical workflow in breast cancer 
screening to avoid false recalls. 
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