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Abstract: Reinforcement learning (RL) has transformed the world of artificial intelligence in 

terms of enabling agents to learn complex behaviors through interaction with their 

environments. In the gaming domain, RL provides the possibility to create lifelike agents who 

can make dynamic decisions and learn to adapt to demanding terrains. However, even with 

significant progress in the field, designing and training RL agents for more complex, 

interactive environments are a challenging task, especially when lifelike behavior with robust 

performance is desired. This paper discusses developing and training custom RL agents on 

Unity ML-Agents with the PPO algorithm. The main challenge is to produce an agent that can 

navigate dynamic terrains and adapt to varied situations while being computationally efficient. 

Most frameworks require massive fine-tuning, which consumes a lot of time and resources. To 

address the above problem, we suggest an integrated curriculum learning approach coupled 

with dynamic terrain generation and tailored reward structures. The Unity ML-Agents 

framework is used for smooth environment creation and simulation, and the PPO algorithm 

ensures stable and efficient learning of policies. Experimental results show marked 

improvements in the adaptability and performance metrics of agents, thereby signifying the 

efficacy of our proposed approach. This contribution advances RL applications for games, 

thereby opening a route to more immersive and intelligent virtual environments. 

Keywords: Reinforcement Learning, Active Ragdoll, Dynamic Gameplay, Artificial 

Intelligence, Gaming, Machine Learning, Physics Simulation 

 

INTRODUCTION 

Reinforcement learning (RL) is an influential paradigm in developing agents capable of making 

sophisticated decisions in dynamic and uncertain environments. Rapid progress made in the 

field of game technology has now led to new ways to utilize RL in the creation of intelligent, 

adaptive, and lifelike agents. Nevertheless, while holding high promise, practical applications 

of RL in gaming remain quite a challenge, particularly in the area of designing agents that will 

navigate through dynamic terrains and make human-like behaviors with minimal computational 

complexity [1]. The formatter will need to create these components, incorporating the applicable 

criteria that follow.  

A.  Problem Statement   

The gaming industry is increasingly demanding intelligent agents that can simulate lifelike 

behaviors, adapt to varying scenarios, and respond dynamically to unpredictable game 

environments. However, challenges related to designing effective reward structures, managing 

complex action and observation spaces, and optimizing training for dynamic terrains hinder 
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such agent development. Existing solutions often demand considerable fine-tuning, which 

makes the development process resource-intensive and time-consuming. This research 

addresses these issues, with the help of a framework such as Unity ML-Agents and the PPO 

algorithm for effective and efficient building and training adaptable RL agents. 

B.  Significance of Reinforcement Learning in Gaming   

Reinforcement learning supplies the very strong framework toward generating learning and 

improvement-based interaction of agents with their environment. In game theory, this allows 

building strategizing agents that would come closer to realistic behavior by better fitting into 

dynamic challenges [2]. This makes games more involving for users in terms of engagement 

and play while introducing realism and unpredictability. Moreover, using game-playing RL-

driven agents in designing new versions of a game provides further testing and balance 

regarding mechanics, hence avoiding heavy testing and tweaking found during typical game 

development. 

C. Objectives of the Study   

This paper will:  

1) Develop custom RL agents using the Unity ML-Agents framework and PPO algorithm. 

2) Design a structured methodology incorporating dynamic terrain generation, curriculum 

learning, and tailored reward mechanisms to improve agent adaptability.  

3) Evaluate the performance and efficiency of the trained agents in navigating dynamic terrains 

and achieving predefined objectives. 

4) Insights into optimizing RL workflows for gaming applications and contributions to the 

development of immersive and intelligent game design. 

I. BACKGROUND AND RELATED WORK  

A. Overview of Reinforcement Learning (RL)   

Reinforcement learning is that subset of machine learning which enables agents to learn about 

making sequential decisions by interacting with an environment to maximize the cumulative 

rewards. It doesn't depend on labeled datasets for supervised learning, and the learning is 

instead achieved using trial-and-error for optimizing policies. RL is controlled by several 

components that include states, actions, rewards, and policies. Prominent algorithms, such as 

Q-Learning, Deep Q-Networks (DQN), and Proximal Policy Optimization (PPO), have 

transformed the RL application in robotics, autonomous vehicles, and gaming, where real-time 

adaptability and decision-making are critical [3].  

B. Unity ML-Agents Framework: Capabilities and Features   

This open-source Unity ML-Agents Toolkit lets developers train RL agents within virtual 

environments. This offers seamless interaction with the Unity 3D simulation engine, in which 

a more complex environment with vivid visual effects is created. Other features comprise 

curriculum learning, multiple algorithms, custom reward system, and the support for multiple-

agent environments. The framework simplifies environment design and simulation, and it is a 

preferred choice for researchers and developers that aim to apply RL in gaming and simulation 

contexts.  

C. PPO Algorithm: Principles and Applications   

Proximal Policy Optimization, or PPO, is an advanced policy gradient algorithm for policy 

optimization in RL that guarantees stability and efficiency. Its balance between simplicity and 

performance using a clipped surrogate objective function ensures that policy updates will not 

deviate too far. This stability makes it well-suited for the continuous control tasks and the high-

dimensional environments often encountered in gaming. Due to its computational efficiency 

and robust performance, PPO has been widely used among all the RL algorithms across 

domains [4].  
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Fig 1. System architecture diagram 

 
Fig 2. System flow 

 

D. Summary of Existing Research in RL for Gaming   

Researches so far have shown that RL is transformative in the field of gaming, mainly to 

enhance agent behavior and game dynamics. Studies have demonstrated the capability of RL 

in training agents for various tasks within gaming, such as navigation, combat, and strategic 

decision-making. Deep Q-Learning and Actor-Critic methods have been widely used 

approaches with Unity ML-Agents enabling scalable experimentation. However, most 

simulations have static or simplistic scenarios that limit the adaptability of agents to dynamic 

environments. Recent efforts have begun solving these gaps by combining curriculum learning 

and procedural generation, which leaves the challenge of trying to balance computational 

efficiency versus complex behavior as a focal point for active research. 

 

II. METHODOLOGY 

A.  Agent Design  

A.1. Behavior and Objectives   

The main goal of the agent is to move in dynamic terrains with lifelike, adaptive behavior. The 

agent is created to balance exploration and exploitation, so it can be used for a wide range of 

scenarios [5]. Tasks include moving over different terrains, avoiding obstacles, and reaching 

target locations while penalizing inefficient actions as little as possible. 

A.2. Action and Observation Spaces   
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Observation Space: The perception of an agent would contain a vector input and some sensor 

measurements, like distance to obstacle or target proximity. And for the case of tasks involving 

terrains, that also include heightmap measurements and slope orientation. 

A.3. Action Space:  

Action space is comprised of continuous values controlling movement (such as stride length, 

turn angle) and discrete decisions like jumping or crouching. It ensures precise and adaptive 

behavior of the agent. 

 
Fig 3. Unity Ml Agent Framework Architecture 

B. Environment Setup   

B.1. Dynamic Terrain Generation   

The environment includes procedurally generated terrains, such as slopes, uneven surfaces, and 

moving platforms, to mimic real-world challenges. Terrain complexity increases over time to 

test and enhance the agent's adaptability. Environmental randomness ensures that the agent 

does not overfit to specific scenarios, improving its generalization capability [6]. 

B.2. Reward Structure and Training Parameters   

The reward system is such that it reinforces desirable behaviors while discouraging inefficient 

actions. Such key components include: 

● Positive reinforcers upon reaching target places and evading dangers. 

● Penalties to collision, high energy expenditure, or suboptimal routes. 

Gradual scaling of rewards to match the increasing difficulty of the environment. 

Training parameters, including batch sizes, learning rates, and discount factors optimized to 

balance exploration and convergence, are used. 

C. Training Process   

C.1. Curriculum Learning 

This section will evaluate the performance of trained agents across various scenarios with a 

focus on key metrics and comparison to baseline models. It will highlight improvements in 

adaptability, efficiency, and generalization for the proposed methodology in dynamic and 

complex environments [7]. 

C.2. Hyperparameter Tuning   

Hyperparameters for PPO such as clip range, learning rate, and entropy coefficient are 

iteratively tuned through grid search and automated optimization. Fine-tuning will ensure 

stable convergence and the least chance of policy collapse during training. 

C.3. Simulation Parameters and Run Details   

The simulation runs include multiple parallel environments for accelerating training. Every run 

takes millions of steps, with periodical evaluation to track average reward, success rate, and 
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policy entropy. The visualizations are used in monitoring agent behavior and determining 

potential bottlenecks or anomalies during training [8][9]. 

This methodology combines state-of-the-art techniques and tools to ensure robust and scalable 

development of RL agents, providing a foundation for further progress in gaming and 

simulation applications. 

III. RESULTS 

This section will evaluate the performance of trained agents across various scenarios with a 

focus on key metrics and comparison to baseline models. It will highlight improvements in 

adaptability, efficiency, and generalization for the proposed methodology in dynamic and 

complex environments. 

A. Performance Metrics 

    The agent's performance was assessed using the following key metrics: 

1) Average Cumulative Reward measures how effectively an agent can successfully fulfill 

objectives and avoid receiving penalty signals. 

2) Success Rate: Percentage of episodes in which the agent succeeded to complete the task (e.g., 

reach the target location). 

3)  Adaptability Score: It measures the adaptability of the agent to more complex terrains. 

4) Energy Efficiency: Tracks the energy expended to complete tasks, highlighting the agent's 

optimal path-finding capabilities. 

5) Training Convergence Time: It is the number of training steps it takes for the policy to stabilize 

and reach a satisfactory performance level. 

 

 
Fig 4. Environment Metrics (Environmental metrics and agent performance metrics of the agent in the simulation 

environment) 

B. Comparison with Baseline Models 

The proposed methodology was compared to baseline models trained using simpler reward 

structures and static environments. The main comparisons include: 

● Success Rate: Average success rate for agents customized is 25% above baseline models in 

terrains that are dynamic in nature. 

● Cumulative Rewards: The designed agents always outperformed baseline models, with 

maximum cumulative rewards up to 40% higher in the complex scenario. 

● Convergence Speed: Curriculum learning reduced training time by 30% compared to baseline 

models, which required longer training periods to adapt to complex environments [10]. 
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Fig 5. Loss Evaluation (agent performance in the environment and how effectively it optimizes its actions) 

 

 
 

Fig 6. Comparison between curriculum and no curriculum learning (performance using two learning methods) 

 

 
 

Fig 7. Policy metrics evaluation (here we monitor the changes in policy and its effects) 

C. Key Observations and Findings 

1)  Enhanced Adaptability: The dynamic terrain generation and curriculum learning approach 

significantly improved the agent's adaptability, enabling robust performance in diverse 

scenarios. 

2) Efficient Learning: Reward structures and hyperparameter tuning led to fast convergence, 

showing the relevance of environment design in training RL [11]. 

3) Generalization Ability: Agents trained using the proposed methodology showed better 

generalization, successfully navigating unseen terrains with minimal performance degradation 

[12]. 
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4) Behavior Realism: The PPO algorithm successfully produced smooth, human-like movements, 

especially in navigating challenging terrains, which enhanced the lifelike behavior of the 

agents. 

The results prove the effectiveness of the proposed approach, thereby showing remarkable 

improvements in RL agent performance. This method enhances adaptability and efficiency, 

with transformative potential in gaming applications and broader usage in dynamic, real-world 

reinforcement learning scenarios. 
 

 
 

Fig 8. Cumulative reward Metrics (this graph shows how well the agent performs in each episode over time) 
 

 

 
Fig 9. Information metrics reward & policy loss 
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Fig 10. Information metrics 

         
Fig 11. Walker Agent Muscle And Joint Configurations                                

 

          
   Fig 12. Agent Training And Demo Runs 
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Fig 13. Crawler Agent 

                                                                  

 
Fig 14. Crawler Agent 

 

IV. DISCUSSION 

A. Implications of Results  

This research shows the vast potential of reinforcement learning in the development of gaming 

applications. The approach proposed, using Unity ML-Agents and PPO, enhanced agent 

adaptability, lifelike behavior, and performance across dynamic environments [13]. These 

results illustrate the possibility of designing RL agents that navigate complex terrains, opening 

up new avenues for creating immersive gaming experiences [14]. Furthermore, the structured 

methodology can be used as a template for other industries, including robotics, simulation-

based training, and autonomous navigation, where adaptive decision-making is vital.  

B. Challenges and Limitations   

Despite its successes, this research faced several challenges. 

1) Computational Resources: Training RL agents requires a lot of computational power, 

especially in high-dimensional environments; this is one of the barriers to its wider adoption. 

2) 2. Complexity in the Environment: Dynamic terrain generation, although successful, could not 

be scaled to even more complex situations due to the increased time of training and decreased 

rates of convergence. 

3) Generalization Limits: While the agents generalized well on unseen terrains, they were still 

limited in their adaptability to drastically different environments-for example, entirely new 

physics rules. 
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4) Reward Engineering: Designing a reward structure that balances task completion, energy 

efficiency, and lifelike behavior required extensive fine-tuning and experimentation [15]. 

C. Potential Improvements   

To overcome the challenges and improve the approach further, the following improvements 

are proposed:  

1) Distributed Training: Distributed training techniques, such as multi-GPU setups or cloud-based 

training, can reduce computational constraints and accelerate convergence.  

2) Transfer Learning: Transfer learning techniques can be incorporated to make agents adapt 

better to new environments by leveraging pre-trained policies. 

3) Advanced Reward Systems: Automated reward shaping with neural networks or unsupervised 

methods might reduce the effort required in manual reward engineering.  

4) Complex Environments: The environment can be expanded to include more diverse and multi-

modal scenarios such as interactive objects or multi-agent dynamics to further test and enhance 

agent capabilities [16]. 

5) Behavior Modeling: Behavior cloning or imitation learning may be integrated to make the 

actions of the agent more realistic by using human-generated data as a baseline. 

 

That marks the discussion of the present study's contributions, on challenges and 

improvements. With that, it points to new areas of exploration, always keeping in mind the 

enormous potential of more advanced RL applications for driving innovation with gaming and 

dynamic real-world situations. 

V. CONCLUSION AND FUTURE WORK 

A. Summary of Key Contributions   

This paper presents a novel approach to developing and training custom reinforcement learning 

(RL) agents using the Unity ML-Agents framework and the Proximal Policy Optimization 

(PPO) algorithm. Key contributions include: 

1) A structured methodology integrating dynamic terrain generation, curriculum learning, and 

tailored reward structures to improve agent adaptability and efficiency in complex 

environments. 

2) The substantial enhancement of agent performance in such regards as higher success rate, fast 

convergence, and generalization compared to the baseline. 

3)  The application of PPO in building agents that generate lifelike human behavior as it crosses 

the terrain: the most promising path for gaming applications. 

B. Suggestions for Future Research   

Future work may proceed with further investigation along these lines: 

1)  Advanced Multi-Agent Systems: Multi-agent environments, in which several RL agents are 

interacting with each other, might be much more complicated and exciting game mechanics. 

2) Complex Environments: The study could extend into even more dynamic and interactive 

environments with various features, such as weather, day-night cycles, and changes in physics 

in real-time. 

3) Hybrid RL Approaches*: Combining RL with other machine learning paradigms, such as 

supervised learning or imitation learning, could improve agent learning efficiency and behavior 

realism.  

4) Human-RL Collaboration*: Exploring hybrid systems where human actions and RL agents 

collaborate may lead to more advanced gaming AI that adapts based on human input. 

5) Real-World Applications*: Extending RL applications beyond gaming to robotics, autonomous 

vehicles, and real-time simulations, where the agent's decision-making ability needs to adapt 

to real-world unpredictability.   

These suggestions aim to further enhance RL methodologies and expand their applicability in 

both gaming and broader artificial intelligence fields. 
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