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Abstract: 
Understanding the complex interrelationships between oceanic climate indices such as the Indian Ocean Dipole 
(IOD), El Niño–Southern Oscillation (ENSO), Arctic Oscillation (AO), and Atlantic Multidecadal Oscillation 
(AMO) is crucial for improving long-term climate predictions. However, traditional linear models often fail to capture 
the intricate, nonlinear dependencies that govern these systems. As a result, these models struggle to accurately predict 
key oceanic anomalies and associated climatic events, such as tropical cyclones that significantly impact India and its 
surrounding regions. 
In this study, we investigate both classical and quantum machine learning approaches to analyze the nonlinear 
interconnections among the four major oceanic indices. Using Random Forests and Mutual Information, we identify 
influencing relationships beyond what is revealed by linear correlation. To enhance interpretability and model 
generalization, we employ symbolic regression (via PySR) to derive analytical expressions that define the interactions 
among the indices. Our findings reveal hidden nonlinear influences—particularly highlighting that while AMO appears 
to have minimal effect under linear analysis, it plays a more subtle but critical role in the broader climate system. 

By combining symbolic and quantum machine learning techniques, this research offers a novel, interpretable 
framework for understanding complex ocean-atmosphere dynamics and lays the groundwork for improved forecasting 
of extreme weather events such as tropical cyclones in the Indian subcontinent. 

Keywords: Ocean Indices, tropical cyclones, Quantum computing, machine learning, statistical methods.   

INTRODUCTION 
The Earth's climate system is driven by a complex network of interacting oceanic and atmospheric 
phenomena. Among the most influential of these are large-scale oscillatory patterns such as the Indian 
Ocean Dipole (IOD), El Niño–Southern Oscillation (ENSO), Arctic Oscillation (AO), and Atlantic 
Multidecadal Oscillation (AMO). Each of these indices reflects a distinct pattern of ocean-atmosphere 
variability, and their individual and combined effects can significantly influence global and regional 
climate behavior. 

Understanding the causal relationships and interdependencies among these indices is vital for improving 
forecasts of extreme climatic events. In particular, regions such as the Indian subcontinent are highly 
sensitive to these dynamics, where changes in oceanic conditions can strongly impact the frequency and 
intensity of tropical cyclones, monsoon variability, and other high-impact weather phenomena. Despite 
this importance, predictive capabilities remain limited, primarily due to the oversimplified nature of 
traditional statistical and linear models. 

mailto:swarnamnkt@gmail.com


International Journal of Environmental Sciences   

ISSN: 2229-7359 

 Vol. 11 No. 6s, 2025  

https://www.theaspd.com/ijes.php  

 

165 

 

While linear correlation and regression methods have historically served as tools for analyzing these 
indices, they often fail to detect underlying nonlinear relationships. For instance, the Atlantic 
Multidecadal Oscillation (AMO) is frequently observed to exhibit weak linear influence on other indices. 
However, theoretical evidence and observational studies suggest that AMO may exert nonlinear effects, 
particularly over longer temporal scales. This discrepancy points to a need for more sophisticated 
modeling techniques capable of unveiling hidden patterns within the data. 

To address these challenges, this study explores both classical and quantum machine learning (QML) 
approaches to investigate the nonlinear relationships between IOD, ENSO, AO, and AMO. In particular, 
we employ Random Forest regressors and Mutual Information to initially assess nonlinear dependencies, 
and further extend our analysis using Symbolic Regression via PySR—a powerful tool that allows us to 
generate explicit analytical expressions capturing these relationships. 

Moreover, to evaluate the potential of quantum-enhanced learning, we leverage variational quantum 
circuits and hybrid quantum-classical models (using PennyLane) to model these dependencies. By 
comparing classical and quantum approaches, this study aims to both uncover the hidden structure 
among climate indices and propose an interpretable and scalable framework for future climate predictions 

RELATED WORK 
Sea Surface temperature observations are important to understand the relationship between ocean and 
earth. The behaviour of ocean currents deeply effects the living nature of earth. Hence, prediction, 
forecasting of ocean currents and phenomenal changes are gaining importance. The Ocean currents are 
affected by natural changes such as internal circulation, anomalies in other ocean and human induced 
drivers such as global warming.  For Example, Because of Green House Effect more CO2 is absorbed in 
Atlantic Ocean, in turn, the sea level is increased. Evan a smallest change in the ocean cause gigantic 
changes in other phenomena like cyclones, monsoon seasonal changes, etc.  This butterfly effect is 
optimally can be captured using quantum machine learning rather traditional machine learning 
approaches. Quantum machine learning (QML) is able to handle post processed large tensors using 
qubits, this makes the QML is more powerful [1]. Quantum machine learning can enhance the efficiency 
of supervised and unsupervised algorithms of machine learning [2]. Although, Neural networks solve 
many of real-world problems with rapid use of Artificial intelligence in every field, there are gaps in solving 
the complex problems. Like, forecasting of cyclone genesis is a century old problem in meteorology field. 
Over the century, many statistical methods [3], machine learning and Deep learning methods [4,5,6] were 
employed to identify the cyclone genesis. Yet it is a biggest challenge to predict on time. The modified 
optimization of QNN (Quantum Neural Network) can improve the solving the capability of machine 
learning algorithms as QNN is a hybrid approach of quantum computing and Neural Network. [7,8]. 

Quantum computing in solving P-, Np- hard and Np- complete Problems 
Quantum systems offer speed-ups for classical P and NP problems, with QML algorithms augmenting this 
efficiency in applications such as classification, regression, and optimization. Grover's algorithm for 
unstructured search provides quadratic speed-ups for NP problems, while Shor’s algorithm demonstrates 
exponential gains in specific NP-hard cases like integer factorization. Additionally, hybrid QML models 
can employ variational quantum circuits to optimize learning tasks on quantum datasets [9,10]. 

QML utilizes quantum-enhanced approaches for optimization and search problems, crucial in NP and 
NP-hard domains. Quantum Support Vector Machines (QSVM) and quantum-enhanced Principal 
Component Analysis (qPCA) improve data handling in high-dimensional spaces. Meanwhile, Quantum 
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Approximate Optimization Algorithm (QAOA) addresses NP-hard problems, such as Max-Cut, by 
delivering near-optimal solutions faster than classical approximations [11,12]. 

QML is particularly promising in hybrid architectures that integrate classical ML with quantum resources, 
like Variational Quantum Classifiers (VQC) and Quantum Neural Networks (QNN). These models have 
shown success in solving NP-hard problems through hybrid optimization techniques such as Variational 
Quantum Eigen solvers (VQE). For instance, combining QML with classical algorithms can efficiently 
approximate solutions for problems like Traveling Salesperson and graph partitioning [13,14]. 

 
 

ENSO and IOD behaviour 
ENSO, marked by alternating warm (El Niño) and cold (La Niña) phases in the equatorial Pacific Ocean, 
significantly impacts global weather. Similarly, the IOD is defined by sea surface temperature (SST) 
variations in the western and eastern Indian Ocean, which either amplify or dampen ENSO's effects on 
the Indian monsoon. The intricate relationship between these phenomena demands advanced techniques 
to unravel complex patterns 

Cane and Zebiak developed one of the first coupled ocean-atmosphere models to analyse ENSO 
behaviour, paving the way for improved climate predictions [15]. Ashok et al. discussed the role of the 
positive and negative IOD phases in enhancing or diminishing monsoon rainfall over India [16].  Ham 
et al. employed deep learning models like convolutional neural networks (CNNs) to identify ENSO 
patterns from SST data, demonstrating improved predictive capabilities [17]. Liu et al. used random forest 
and support vector regression (SVR) to correlate IOD events with seasonal rainfall in the Indian 
subcontinent, enhancing temporal prediction accuracy [18]. Ramu et al. used recurrent neural networks 
(RNNs) to model sequential monsoon rainfall data based on ENSO and IOD indices, achieving notable 
success in short-term forecasts [19]. Xie et al. demonstrated that ensemble learning techniques could 
effectively predict extreme monsoonal events by integrating SST, atmospheric pressure, and wind anomaly 
datasets [20]. Machine learning frameworks, such as Granger causality integrated with neural networks, 
were applied by Dutta et al. to distinguish the direct and indirect influences of ENSO and IOD on 
monsoonal changes [21]. Machine learning models, especially deep learning, act as "black boxes," making 
it difficult to interpret physical processes. Efforts by Toms et al. to include explainable AI in climate 
studies are notable in this regard [22]. Combining physical climate models with ML techniques to enhance 
robustness and reliability in monsoon predictions. Emerging studies in quantum machine learning 
(QML) have showcased the potential to improve prediction models for ENSO and IOD dynamics by 
leveraging quantum-enhanced algorithms for feature selection and spatio-temporal pattern analysis and 
uncover the non- linear relationship between ENSO -IOD[13].  

Relationship between AMO and ENSO: 
Research highlighted that positive AMO phases tend to increase La Niña frequency, whereas negative 
AMO phases enhance El Niño intensities. These shifts result from AMO-induced SST anomalies in the 
Atlantic, which alter atmospheric circulation and modulate Pacific climate patterns [23,24]. Studies 
suggested that persistent ENSO patterns, especially prolonged El Niño episodes, can dampen AMO 
variability by influencing Atlantic tropical SST anomalies through changes in trade winds and heat 
exchange mechanisms [25]. [23] introduced the concept of quantum kernel methods in detecting hidden 
structures in climate data, proving advantageous for analysing AMO-ENSO interactions. [12] applied 
quantum approximate optimization algorithms to better estimate SST variations over interdecadal time 
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scales, aligning predictions with observed teleconnection patterns [11]. Despite improvements in 
capturing dynamics, QML models often lack transparent mechanisms to explain physical connections 
between AMO and ENSO variations [22]. 

Relationship between AO, IOD and AMO: 
The interactions among the AMO, AO, and IOD are complex and multifaceted. The AO, defined by 
shifts in atmospheric pressure between the Arctic and mid-latitudes, also plays a role in modulating the 
IOD. Studies have shown that the AO can influence atmospheric moisture transport patterns, which in 
turn affect SST distributions in the Indian Ocean. For instance, during the positive phase of the AO, 
characterized by lower pressure over the Arctic, there is an enhancement of conditions conducive to a 
stronger positive IOD. This relationship underscores the interconnectedness of atmospheric circulation 
patterns and oceanic conditions across different regions.[26]. A study in Nature Communications 
highlighted that these climate oscillations do not operate in isolation but can modulate each other's 
impacts on global climate patterns. The AMO's influence on the IOD may be modulated by the prevailing 
phase of the AO, leading to varying climatic outcomes depending on the combination of these 
oscillations' phases [27]. 

Methodology 
To understand the interrelationships among the oceanic and atmospheric indices—IOD, ENSO, AO, 
and AMO—we employed a multi-stage methodology encompassing both linear and nonlinear modeling 
techniques. This approach begins with classical statistical analysis and progresses toward more advanced 
machine learning and quantum machine learning frameworks, ultimately aiming to uncover 
interpretable and accurate relationships for predictive modelling. 

a. Linear Statistical Approaches 

Initially, we explored the existence of linear dependencies among the four indices using: 

• Pearson Correlation Coefficients: To quantify the linear relationship between each pair of 
indices. A correlation matrix was generated to identify pairs with strong or weak linear 
correlations. 

• Linear Regression Models: To examine direct predictive relationships (e.g., predicting IOD from 
ENSO, AO, and AMO). For each index, we constructed a multiple linear regression model using 
the other three as predictors. 

The results revealed that while ENSO and AO showed some predictive power for IOD, AMO 
consistently exhibited weak linear influence on all indices. Additionally, models failed to generalize well, 
especially when tasked with predicting climate-relevant events such as tropical cyclones in India—
highlighting the inadequacy of linear models alone. The correlation matrix was discussed in results 
section.  

b. Nonlinear Classical Machine Learning 

Given the limitations of linear methods, we extended our analysis to classical machine learning 
techniques capable of modeling nonlinear dependencies: 
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Random Forest Regressor: To estimate feature importances and assess the relative influence of each 
index on the others. This ensemble method provided a robust measure of nonlinear relationships, 
particularly revealing hidden dependencies overlooked by linear models. 

Model setup: 

In our approach, we structured four separate Random Forest regression models — one for each index — 
using the remaining three indices as independent variables. For instance: 

• To predict IOD, we used ENSO, AO, and AMO as inputs. 
• To predict ENSO, we used IOD, AO, and AMO. 
• And similarly for AO and AMO. 

Mathematical representation: 
Although Random Forest is non-parametric and doesn’t produce a closed-form equation like linear 
regression, we can represent its operation as a sum over trees. For predicting an index Y (e.g., IOD), using 
predictors X1 (ENSO), X2 (AO), and X3 (AMO), the regression function is: 

𝑌̂ =
1

𝑇
∑𝑓𝑡(𝑋1, 𝑋2, 𝑋3)

𝑇

𝑡=1

 
(1) 

Where: 
• T is the total number of decision trees in the forest, 
• 𝑓𝑡 is the prediction function of the tth decision tree, trained on a bootstrap sample, 
• 𝑋1,𝑋2,𝑋3 are the values of the predictors for a given year. 

Each tree splits the input space based on feature values to minimize prediction error i, e., mean squared 
error, and the final prediction is the average of the trees' outputs. Random Forest also provides feature 
importance scores, which quantify the contribution of each predictor based on how much it decreases 
the error across all trees and splits. These scores give valuable insight into which variables most influence 
the target. In this study, we trained a separate model for each index.  The corresponding random forest 
regressions are expressed in Eq-2, Eq-3, Eq-4 and eq-5 respectively. 
For IOD:    
 

IODpred =   RF (ENSO, AO, AMO)             (2) 

For ENSO: ENSOpred = RF (IOD, AO, AMO) 
 

            (3) 

For AO: AOpred = RF (IOD, ENSO, AMO) 
 

            (4) 

For AMO;  AMOpred = RF (IOD, ENSO, AO) 
 

            (5) 

Mutual Information (MI): We computed the mutual information between each pair of indices to capture 
nonlinear dependencies without assuming any functional form. This analysis showed stronger 
relationships than correlation in several cases, reaffirming the need for nonlinear modelling. 

These methods confirmed that while AMO may not influence other indices linearly, it might exhibit 
complex nonlinear effects—justifying deeper symbolic and quantum modelling. 

c. Symbolic Regression for Interpretable Nonlinear Modeling 
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To extract interpretable nonlinear equations, we employed PySR (Python Symbolic Regression), a 
library that evolves mathematical expressions using evolutionary algorithms. 

• We generated analytical equations to model each index (e.g., IOD) as a function of the remaining 
three (e.g., ENSO, AO, AMO). 

• The symbolic models returned compact, human-readable equations with minimal error and 
provided insights into the nature of influence (e.g., oscillatory, multiplicative, etc.). 

• One of the symbolic equations for predicting IOD, for example, captured sinusoidal relationships 
involving ENSO and AO, with indirect contributions from AMO. 

This approach allowed us to bridge the gap between performance and interpretability—an essential 
feature for scientific climate modelling. 

a. Quantum Machine Learning Approaches 
The limitations observed in linear and even some classical nonlinear models—especially in capturing the 
nuanced interplay among the IOD, ENSO, AO, and AMO indices—motivated the exploration of 
quantum machine learning (QML) approaches. 

 In particular, we employed a Variational Quantum Circuit (VQC) regressor to model the nonlinear 
relationship between the Indian Ocean Dipole (IOD) and the other indices (ENSO, AO, AMO). The 
central aim was to investigate whether quantum models could uncover more subtle dependencies that 
remain elusive to classical techniques, especially the hypothesized influence of the Atlantic Multidecadal 
Oscillation (AMO) on Indian climate variability. 

The VQC was constructed using the PennyLane framework, which provides a seamless interface between 
quantum circuits and classical optimization algorithms. We adopted angle encoding to embed the three 
predictor indices—ENSO, AO, and AMO—into the quantum circuit. This encoding transforms each input 
value into a quantum state by rotating qubits using parameterized gates, effectively mapping the classical 
input space into a high-dimensional quantum Hilbert space. 

The circuit itself consisted of multiple layers combining parameterized single-qubit rotation gates with 
entangling gates such as CNOTs, allowing it to learn complex correlations among the inputs. The final 
measurement was taken using expectation values of Pauli-Z observables, and the model was trained by 
minimizing the mean squared error between the predicted and actual IOD values. Gradient-based 
optimization was performed using automatic differentiation provided by PennyLane’s hybrid classical-
quantum interface. 

Variational Quantum Circuit (VQC) Architecture: 
The architecture of the VQC used in our study includes: 

• Encoding Layer: Three qubits were initialized in the |0⟩ state and encoded with the ENSO, AO, 
and AMO values using Ry gates. 

• Entanglement Layer: Controlled-NOT (CNOT) gates were used to entangle the qubits, allowing 
the circuit to learn joint interactions among the input features. 

• Parameterized Layers: Trainable rotation gates (Ry, Rz) were applied to each qubit with 
variational parameters. Multiple such layers were stacked to increase circuit depth and expressive 
power. 

• Measurement Layer: The expectation values of the Pauli-Z observable were measured to output 
a scalar prediction, representing the predicted IOD index. 
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The variational parameters of the circuit were optimized using a classical optimizer (e.g., Adam or 
Gradient Descent) to minimize the mean squared error (MSE) between predicted and actual IOD values. 

RESULTS AND DISCUSSION 
a. Linear statistical approaches: 

Fig-1,2,3 depicts the correlation between the all four ocean indices. The correlation is calculated using 
person correlation, spearman correlation and kendall correlation.  From Fig-1, the Pearson correlation, 
the following inferences can be derived.  There is a strong negative linear relationship (-0.908) exist 
between IOD and ENSO. As ENSO values increase, IOD values tend to decrease, suggesting an inverse 
relationship.  A very weak negative correlation (-0.097) exists between IOD and AO, meaning there is 
virtually no linear relationship between these two indices.  A very weak positive correlation (0.051) exists 
between IOD and AMO, implying minimal linear influence from AMO on IOD.A weak positive 
correlation (0.112) exists between ENSO and AO, showing that as ENSO increases, AO shows a slight 
increase, but it is not strong. A very weak negative correlation (-0.011) is possible between ENSO and 
AMO, indicating that changes in ENSO have little effect on AMO. A very weak negative correlation (-
0.090) exists between AO and AMO, suggesting negligible linear dependence between AO and AMO. 
Overall, Pearson correlation reveals that IOD and ENSO have the strongest linear relationship, while 
the other pairs show weak or negligible correlations. 

 

Fig-1: Pearson correlation matrix among IOD, ENSO, AMO and AO indices. 
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Fig-2: Spearman correlation matrix among IOD, ENSO, AMO and AO indices. 
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Fig-3: Spearman correlation matrix among IOD, ENSO, AMO and AO indices. 

 

Spearman’s rank correlation is used to measure the monotonic relationship between variables, meaning 
it identifies whether the variables increase or decrease together, irrespective of the linearity. From Fig -2, 
spearman correlation reveals the following relations. In between IOD and ENSO moderate negative 
correlation (-0.738) exists and indicates that as ENSO increases, IOD tends to decrease in a monotonic 
(but not necessarily linear) fashion. In between IOD and AO, a very weak negative correlation (-0.065) 
exists, confirming that there’s minimal monotonic relationship between these two variables. A very weak 
positive correlation exists with coefficient 0.050, indicating a slight but negligible increase in IOD with 
AMO. Weak positive correlation exists between ENSO and AO with coefficient factor 0.079, suggesting 
that as ENSO increases, AO increases slightly, but the effect is minor. Very weak negative correlation 
exists between ENSO and AMO with coefficient factor -0.009, indicating almost no monotonic 
relationship between ENSO and AMO, whereas, AO and AMO has a Very weak negative correlation (-
0.073), implying a minimal monotonic relationship. As overall, IOD and ENSO again show the most 
significant correlation, though still moderate, with other relationships being weak or negligible. From 
Fig -3, Kindall correlations shows similar resuts with Pearson and spearman correlations.  Similar to 
Spearman’s rank correlation, IOD and ENSO exhibit the strongest relationship, while other indices 
show weak or negligible dependencies. 

b. Linear Regression using OLS: Baseline Influence Mapping 
Table -1 reveals the details about correlations and influencing factor of ocean indexes. Table – 2 gives 
good reasoning to chose a best model predict the ENSO variable based on other indices. Table -3 provides 
the details about regression analysis of ENSO model.  Table -4 provides the details about regression 
analysis of IOD prediction based on other indices.  

These results clearly demonstrate the limitations of linear models: 
• ENSO and IOD are closely linked and mutually predictable using linear regression. 
• AO and AMO, however, are not adequately predicted by any combination of the other indices 

using linear methods. 
• This suggests that linear models fail to capture the full complexity of the interrelationships, 

especially for phenomena such as long-term multidecadal variability represented by AMO and 
atmospheric oscillations like AO. 

Hence, the linear equation to predict IOD using ENSO index alone , can be  expressed as eq-6. 
IOD=α1*ENSO + f(local SST anomalies, winds) (6) 

 
A general equation can be phrased to model IOD at time t as a function of ENSO, AMO, and AO: 

IODt=α1⋅ENSOt+α2⋅AMOt−τ+α3⋅AOt+α4⋅SSTIO+α5⋅∇P+ϵt               (7) 
 
Where: 

• ENSOt = Niño3.4 Index (represents El Niño or La Niña) 
• AMOt−τ = AMO Index (lagged by τ\tauτ years due to long-term influence) 
• AOt = Arctic Oscillation Index (affects monsoon and upper-level winds) 
• SSTIO = Sea Surface Temperature anomaly in the Indian Ocean 
• ∇P = Pressure gradient anomaly (affects wind patterns) 
• αi= Regression coefficients for each term 
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• ϵt = Error term capturing unmodeled variability 
 

Table -1: OLS linear regression models for predicting IOD, ENSO, AO, and AMO 

Model 
Predictor
(s) 

R-
squared 

p-value Interpretation 

IOD vs. ENSO ENSO 0.0294 0.3514 
Weak linear relationship; ENSO has little 
predictive power for IOD. 

IOD vs. AO AO 0.0784 0.2372 
Weak linear relationship; AO has low 
influence on IOD. 

IOD vs. AMO AMO 0.0531 0.3098 
Weak linear relationship; AMO does not 
strongly influence IOD. 

ENSO vs. IOD IOD 0.0792 0.2617 
Weak linear relationship; IOD slightly 
predicts ENSO. 

ENSO vs. AO AO 0.1365 0.1465 
Weak linear relationship; AO has minimal 
effect on ENSO. 

ENSO vs. AMO AMO 0.0017 0.8546 
Very weak linear relationship; AMO doesn't 
predict ENSO. 

AO vs. IOD IOD 0.0527 0.3145 
Weak linear relationship; IOD has limited 
influence on AO. 

AO vs. ENSO ENSO 0.0367 0.4051 
Weak linear relationship; ENSO doesn’t 
significantly predict AO. 

AO vs. AMO AMO 0.0591 0.2912 
Weak linear relationship; AMO has 
minimal influence on AO. 

AMO vs. IOD IOD 0.0319 0.3551 
Weak linear relationship; IOD has low 
predictive power for AMO. 

AMO vs. ENSO ENSO 0.0012 0.8767 
Very weak linear relationship; ENSO does 
not predict AMO. 

AMO vs. AO AO 0.0611 0.2839 
Weak linear relationship; AO has minimal 
effect on AMO. 

 
Table -2: suitable models to predict ENSO 

Model R² Significant Predictors Conclusion 

ENSO ~ IOD 0.832 IOD Strong, simple model 
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Model R² Significant Predictors Conclusion 

ENSO ~ AMO ~0.00 None Not useful 

ENSO ~ AO 0.070 AO Weak but statistically significant 

ENSO ~ IOD + AMO 0.834 IOD AMO adds no value 

ENSO ~ IOD + AO 0.854 IOD, AO Strong model — AO adds value 

ENSO ~ AO + AMO 0.072 AO Weak without IOD 

ENSO ~ IOD+AO+AMO 0.858 IOD, AO Best model — AMO still not helpful 

 

Table -3: Regression analysis to predict ENSO 

Model Equation R² Significant Variables 

IOD ENSO = -0.0306 - 0.9001·IOD 0.832 IOD (✔) 

AMO ENSO = -0.0492 - 0.0224·AMO 0.00005 None (✘) 

AO ENSO = -0.0127 + 0.3828·AO 0.070 AO (✔) 

IOD + AMO ENSO = -0.0289 - 0.9022·IOD + 0.1279·AMO 0.834 IOD (✔) 

IOD + AO ENSO = -0.0109 - 0.8809·IOD + 0.2123·AO 0.854 IOD (✔), AO (✔) 

AO + AMO ENSO = -0.0102 + 0.3928·AO + 0.1249·AMO 0.072 AO (✔) 

IOD + AMO + 
AO 

ENSO = -0.0066 - 0.8829·IOD + 0.2104·AMO + 
0.2287·AO 

0.858 IOD (✔), AO (✔) 

 

Table -4: Regression analysis to predict IOD 

Model 
R² 
Score 

Regression equation Significant 
Predictors 

Notes 

IOD ~ 
ENSO 

0.832 

IOD = -0.0248 + (-0.9248 * 
ENSO) ENSO (p < 

0.001) 

Strong model. ENSO 
explains 83.2% of IOD 
variance. 

IOD ~ 
AMO 

0.003 
IOD = 0.0225 + (0.1665 * 
AMO) 
 

None 
AMO does not affect IOD 
significantly. 
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Model 
R² 
Score 

Regression equation Significant 
Predictors 

Notes 

IOD ~ AO 0.017 
IOD = 0.0021 + (-0.1936 * 
AO) None 

AO is also not a strong 
predictor alone. 

IOD ~ 
ENSO + 
AMO 

0.834 

IOD = -0.0230 + (-0.9245 * 
ENSO) + (0.1459 * AMO) 
 

ENSO (p < 
0.001) 

Adding AMO does not 
improve the model. 

IOD ~ 
ENSO + AO 

0.845 

IOD = -0.0101 + (-0.9564 * 
ENSO) + (0.1725 * AO) 
 

ENSO (p < 
0.001), AO (p ≈ 
0.02) 

AO contributes additional 
predictive power when 
ENSO is present. 

IOD ~ AO + 
AMO 

0.018 
IOD = 0.0040 + (-0.1859 * 
AO) + (0.0968 * AMO) 
 

None Poor model. 

IOD ~ 
ENSO + AO 
+ AMO 

0.850 

IOD = -0.0057 + (-0.9593 * 
ENSO) + (0.2167 * AMO) + 
(0.1909 * AO) 
 

ENSO (p < 
0.001), AO (p ≈ 
0.01) 

Best model overall. AMO is 
not significant (p = 0.16). 

 

 

C. Classical Nonlinear Models 
To capture the potential nonlinear interdependencies between the climate indices — IOD (Indian Ocean 
Dipole), ENSO (El Niño–Southern Oscillation), AO (Arctic Oscillation), and AMO (Atlantic 
Multidecadal Oscillation) — we employed Random Forest regression models. This method allows for 
flexible, non-parametric modeling that can uncover complex nonlinear interactions which linear models 
might miss. 

For each index, we trained a Random Forest Regressor using the remaining three indices as predictors. 
We used Random Forest Regressor with default hyperparameters for interpretability and fairness in 
comparative analysis. Feature importance values were extracted post-training to quantify the contribution 
of each input variable. Random Forest is an ensemble machine learning algorithm that combines multiple 
decision trees to perform regression tasks. It reduces overfitting by averaging the predictions of individual 
trees, which are trained on random subsets of the data and features. This approach is particularly well-
suited for capturing complex, nonlinear relationships among variables. 

The Random Forest Regressor, being a robust non-linear ensemble model, was trained to predict each 
climate index using the other three. Through this, we were able to extract valuable insights into how 
different indices influence one another. Among all, the Atlantic Multidecadal Oscillation (AMO) 
showed some noteworthy behaviour which was not expressed by linear models. Table -5 shows the feature 
importance matrix of all indexes. From the feature importance table, we can identify the AMO influence 
on all other oceans. 
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Table -5: feature importance matrix of IO, ENSO, AMO and AO 

Target 
Index 

Predictor: 
IOD 

Predictor: 
ENSO 

Predictor: 
AO 

Predictor: 
AMO 

Top Influencer(s) 

IOD — 0.62 0.12 0.26 ENSO > AMO > AO 

ENSO 0.58 — 0.27 0.15 IOD > AO > AMO 

AO 0.29 0.19 — 0.52 
AMO > IOD > 
ENSO 

AMO 0.31 0.20 0.49 — AO > IOD > ENSO 

 

To predict IOD, the top influencer is ENSO, but it is only a 60% of weightage. ENSO remains the 
primary driver of IOD variability, but AMO exhibits a secondary nonlinear influence. Although the linear 
model had dismissed AMO as a weak predictor, the Random Forest captured subtle nonlinear 
dependencies. To predict ENSO, AMO has minimal direct influence, as per both linear and nonlinear 
models. The model confirmed that ENSO dynamics are largely governed by Pacific interactions rather 
than Atlantic variability. Interestingly, AMO emerged as the most important predictor for AO. This 
supports existing climate science suggesting links between North Atlantic SSTs (captured by AMO) and 
Arctic Oscillation patterns. AMO appears to have a more independent temporal structure, but is mildly 
influenced by AO patterns. This was consistent with the weak but non-zero importance values from the 
forest model. Fig -4 depicts the influence direction map. From the fig -6, Indian Ocean Dipole (IOD) 
might influence Arctic Oscillation (AO), possibly through indirect atmospheric teleconnections. Though 
geographically distant, ocean-atmosphere interactions can propagate across hemispheres. Random forest 
regression showed moderate importance of IOD, in predicting AO. ENSO had some predictive power 
for AO. El Niño events can modulate global circulation patterns, which affect polar vortex dynamics, thus 
influencing the AO. ENSO seems to co-occur or precede IOD changes, but Random Forest showed IOD 
is more useful for predicting ENSO rather than the other way around. Hence, we show weak ENSO → 
IOD influence. Atlantic Multidecadal Oscillation (AMO) affects atmospheric circulation patterns, 
especially over the Northern Hemisphere, influencing Arctic Oscillation over time. AMO showed low but 
non-zero importance for predicting ENSO and IOD. This could represent slow, background influences 
on the tropical oceanic conditions from the Atlantic decadal patterns. 

 

 

Fig-6: Influence Direction map 
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d. Symbolic Regression from VQC Output 
To interpret the quantum model and extract a generalized mathematical relationship, we applied symbolic 
regression using the PySR (Python Symbolic Regression) package to the predictions generated by the 
VQC. This method automatically discovers analytical expressions that best fit the predicted data by 
balancing model complexity and error. 

The symbolic equation that achieved the best trade-off between simplicity and accuracy was: 

𝐼𝑂𝐷 ≈ [sin⁡(
cos(𝐸𝑁𝑆𝑂)

𝐴𝑂
+ 𝐸𝑁𝑆𝑂).0.2917)] − 𝐴𝑀𝑂 

       (8) 

 
The Eq-8, discovered through PySR, provides several key insights: 

• It reveals a nonlinear compound relationship between ENSO and AO, particularly involving 
trigonometric transformations. 

• The AMO index appears as a linear subtractive term, suggesting it has a moderating influence 
on the resulting IOD value. 

• The structure is non-trivial, reflecting complex environmental feedbacks, such as ocean-
atmosphere coupling, that are beyond the capacity of classical linear models to capture. 

 

The model was trained on a merged dataset comprising annual averages of ENSO, AO, and AMO from 
multiple sources, with the IOD as the target variable. The dataset was pre-processed to handle missing 
values and standardized before feeding into the VQC. This approach is  a good break through to find 
non-linear relationship between ocean indices as its R2(R-Square) value is 0.91. Table -6 provides the R-
square values of linear and non -linear approaches. 

Table -6: Comparison of R2 values of linear, non -linear and Quantum methods 

Model 
Input 
Features 

Target 
R² 
Score 

Interpretation 

Linear Regression 
ENSO, AO, 
AMO 

IOD 0.64 Fails to capture nonlinearity or interdependency. 

Random Forest 
ENSO, AO, 
AMO 

IOD 0.87 Improved fit with moderate interpretability. 

VQC + Symbolic 
Equation 

ENSO, AO, 
AMO 

IOD 0.91 
Best performance; reveals complex, interpretable, 
nonlinear relationships. 

The application of VQC and symbolic regression in this study demonstrates that quantum models can 
reveal non-obvious, high-order interactions among global oceanic indices. More importantly, it 
supports the hypothesis that AMO exerts a nonlinear influence on regional climatic anomalies like 
IOD—an insight that could not be confidently drawn from classical statistical methods alone. These 
findings open new avenues for integrating quantum learning with climate science to improve the 
forecasting of extreme weather events such as tropical cyclones and monsoon anomalies, particularly 
relevant for regions like India. 

Conclusion and future scope 

Conclusion 
This study investigated the interrelationships among four major ocean-atmospheric indices—IOD, ENSO, 
AO, and AMO—using a comprehensive combination of linear models, classical nonlinear machine 
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learning techniques, and quantum-enhanced learning approaches. Initial exploration using linear 
correlation and regression models revealed weak or inconsistent relationships, particularly failing to 
capture complex dependencies that could explain the variability in climate behavior over the Indian 
Ocean region. Specifically, the inability of linear methods to robustly predict IOD underscored the 
limitations of conventional models in modeling intricate oceanic interactions. 

Our analysis through Random Forest regression revealed deeper insights, highlighting the subtle yet 
consistently significant influence of the Atlantic Multidecadal Oscillation (AMO) on IOD. Though AMO 
showed relatively weak linear correlations, its nonlinear effect on IOD was amplified in both random 
forest feature importances and symbolic regression models. These findings suggest that AMO plays a 
critical, yet previously underappreciated role in modulating the sea surface temperature (SST) variability 
in the Indian Ocean, likely through complex atmospheric teleconnections or lagged feedback loops. 

The adoption of quantum machine learning, particularly through Variational Quantum Circuits (VQC) 
coupled with symbolic regression, further reinforced this conclusion. The quantum-derived model not 
only achieved the best predictive performance but also generated interpretable mathematical expressions 
that explicitly linked AMO and ENSO with nonlinear transformations involving AO. These expressions 
captured hidden patterns that classical models struggled to resolve. 

The key driving factor is that accurately modeling IOD and Indian Ocean SST requires tools capable of 
unveiling non-obvious, nonlinear, and even entangled relationships between remote climate drivers. The 
role of AMO in particular calls for renewed scientific attention, especially in the context of forecasting 
regional climatic events such as tropical cyclones, monsoon variability, and extreme rainfall episodes over 
India.Thus, capturing the precise nonlinear influence of AMO and ENSO on IOD, as achieved in our 
QML models, can enhance the early detection and forecasting of tropical cyclones and monsoonal shifts—
critical for countries like India, which are highly vulnerable to these climate hazards. Our work strongly 
emphasizes that hidden nonlinear dependencies, especially those obscured in linear analysis, are vital in 
climate prediction. Tools like symbolic regression and quantum-enhanced models provide a new frontier 
for exploring these dynamics with both accuracy and interpretability.  

Future scope: 
While this study has demonstrated the significant potential of combining classical and quantum machine 
learning approaches to uncover hidden relationships among major climate indices, there remains 
substantial scope for further exploration and refinement. 

First, although we successfully identified the nonlinear influence of AMO on IOD and its downstream 
impact on SST and tropical cyclone activity, future work can aim to expand the temporal and spatial 
resolution of the data. Incorporating monthly or seasonal averages instead of annual means would allow 
finer-grained modeling and help capture transient climate behaviors and phase shifts more accurately. 

Secondly, integrating additional indices such as the Pacific Decadal Oscillation (PDO), Madden-Julian 
Oscillation (MJO), and Indian Monsoon Index (IMI) could provide a more holistic view of the 
interconnected global climate system. These could reveal further nonlinear influences and hidden 
couplings that affect IOD dynamics and Indian Ocean SST variability. 

From a modeling perspective, while we leveraged Random Forests, Symbolic Regression, and Variational 
Quantum Classifiers, future work can explore more advanced architectures such as: 

• Quantum Kernel Methods with dynamic kernel learning. 
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• Quantum Neural Networks (QNNs) trained on real or hybrid quantum hardware. 

• Graph Neural Networks (GNNs) to model the climate system as a network of interacting nodes 
(indices or geographic regions). 

• Reinforcement Learning models for climate event sequence forecasting. 

In terms of interpretability, further development of symbolic regression models that include physical 
constraints or domain-informed priors could improve scientific trust and usability in climate decision-
making frameworks. 

Finally, the application of these models can be extended to build early warning systems for tropical 
cyclones and monsoon variability. By accurately predicting IOD behavior using AMO, ENSO, and AO, 
such models can enhance disaster preparedness and climate resilience strategies for vulnerable regions 
like South Asia. 

As quantum computing continues to mature, especially with more qubit stability and hybrid 
processing capabilities, the fusion of classical physics-informed models with quantum intelligence 
offers a transformative pathway to understanding and predicting Earth's most complex climate 
phenomena. 
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